Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120202    DOI: 10.1088/1674-1056/21/12/120202
GENERAL Prev   Next  

Multi-symplectic wavelet splitting method for the strongly coupled Schrödinger system

Qian Xu (钱旭)a, Chen Ya-Ming (陈亚铭)a, Gao Er (高二)a, Song Song-He (宋松和)a b
a Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha 410073, China;
b State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
Abstract  We propose a multi-symplectic wavelet splitting method to solve the strongly coupled nonlinear Schrödinger equations. Based on its multi-symplectic formulation, the strongly coupled nonlinear Schrödinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, multi-symplectic wavelet collocation method and symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.
Keywords:  multi-symplectic wavelet splitting method      symplectic Euler method      strongly coupled nonlinear Schrödinger equations  
Received:  24 May 2012      Revised:  19 June 2012      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Jn (Collocation methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10971226, 91130013, and 11001270), the National Basic Research Program of China (Grant No. 2009CB723802), the Research Innovation Fund of Hunan Province, China (Grant No. CX2011B011), and the Innovation Fund of National University of Defense Technology, China (Grant No. B120205).
Corresponding Authors:  Qian Xu     E-mail:  qianxu@nudt.edu.cn

Cite this article: 

Qian Xu (钱旭), Chen Ya-Ming (陈亚铭), Gao Er (高二), Song Song-He (宋松和) Multi-symplectic wavelet splitting method for the strongly coupled Schrödinger system 2012 Chin. Phys. B 21 120202

[1] Gross E 1963 J. Math. Phys. 4 195
[2] Wadati M, Izuka T and Hisakado M 1992 J. Phys. Soc. Jpn. 7 2241
[3] Aydín A and Karasözen B 2011 J. Comp. Appl. Math. 235 4770
[4] Cai J 2010 Appl. Math. Comput. 216 2417
[5] Zhang R, Yu X and Feng T 2012 Chin. Phys. B 21 030202
[6] Cheng X, Lin J and Wang Z 2007 Acta Phys. Sin. 56 3038 (in Chinese)
[7] Zhu H, Tang L, Song S, Tang Y and Wang D 2010 J. Comput. Phys. 229 2550
[8] Zhu H, Song S and Tang Y 2011 Comput. Phys. Commun. 182 616
[9] Ryland B, McLachlan B and Frank J, 2007 Int. J. Comput. Math. 84 847
[10] Chen Y, Zhu H and Song S 2010 Comput. Phys. Commun. 181 1231
[11] Chen Y, Zhu H and Song S 2011 Commun. Theor. Phys. 56 617
[12] Bridges T J and Reich S 2006 J. Phys. A: Math. Gen. 39 5287
[13] Hu W and Deng Z 2008 Chin. Phys. B 17 3923
[14] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[15] Reich S 2000 J. Comput. Phys. 157 473
[16] Bridges T J and Reich S 2001 Physica D 152 491
[17] Chen J and Qin M 2001 Electron. Trans. Numer. Anal. 12 193
[18] Moore B and Reich S 2003 Numer. Math. 95 625
[19] Qian X, Song S, Gao E and Li W 2012 Chin. Phys. B 21 070206
[20] Chen Y, Song S and Zhu H 2012 Appl. Math. Comput. 218 5552
[1] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[5] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[8] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[9] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[10] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[11] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[12] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[15] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
No Suggested Reading articles found!