Please wait a minute...
Chinese Physics, 2006, Vol. 15(10): 2210-2215    DOI: 10.1088/1009-1963/15/10/004
GENERAL Prev   Next  

New exact solutions to some difference differential equations

Wang Zhen (王振) and Zhang Hong-Qing(张鸿庆)
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China
Abstract  In this paper, we use our method to solve the extended Lotka--Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions presented by hyperbolic functions of sinh and cosh, periodic solutions presented by trigonometric functions of sin and cos, and rational solutions. This method can be used to solve some other nonlinear difference--differential equations.
Keywords:  difference differential equation      soliton solutions      Lotka--Volterra equation      discrete KdV equation  
Received:  12 July 2005      Revised:  02 June 2006      Accepted manuscript online: 
PACS:  02.30.Hq (Ordinary differential equations)  
  05.45.Yv (Solitons)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No 2004CB318000).

Cite this article: 

Wang Zhen (王振) and Zhang Hong-Qing(张鸿庆) New exact solutions to some difference differential equations 2006 Chinese Physics 15 2210

[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[3] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[4] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[5] Generalized Chaplygin equations for nonholonomic systems on time scales
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(2): 020502.
[6] Bursting oscillations in a hydro-turbine governing system with two time scales
Qing-Shuang Han(韩青爽), Di-Yi Chen(陈帝伊), Hao Zhang(张浩). Chin. Phys. B, 2017, 26(12): 128202.
[7] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[8] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[9] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[10] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[11] Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid
F M Abbasi, M Mustafa, S A Shehzad, M S Alhuthali, T Hayat. Chin. Phys. B, 2016, 25(1): 014701.
[12] Unstable and exact periodic solutions of three-particles time-dependent FPU chains
Liu Qi-Huai (刘期怀), Xing Ming-Yan (邢明燕), Li Xin-Xiang (李新祥), Wang Chao (王超). Chin. Phys. B, 2015, 24(12): 120401.
[13] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[14] Augmented Lyapunov approach to H state estimation of static neural networks with discrete and distributed time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(5): 050201.
[15] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
No Suggested Reading articles found!