CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First-principles study and electronic structures of Mn-doped ultrathin ZnO nanofilms |
E. Salmania, A. Benyoussefa, H. Ez-Zahraouya, E. H. Saidib, O. Mounkachic |
a LMPHE (URAC 12), Departement de Physique, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco; b LPHE, Departement de Physique, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco; c Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat, Morocco |
|
|
Abstract The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms. The band structure calculation shows that the band gaps of ZnO films with 2, 4, and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness. However, the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively, while they exhibit spin glass phases for higher Mn concentrations. It is also found, on the one hand, that the spin glass phase turns into the ferromagnetic one, with the substitution of nitrogen atoms for oxygen atoms, for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively. On the other hand, the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities, while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system. Moreover, it is shown that using the effective field theory for ferromagnetic system, the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction.
|
Received: 29 January 2012
Revised: 03 April 2012
Accepted manuscript online:
|
PACS:
|
66.30.Xj
|
(Thermal diffusivity)
|
|
72.20.Dp
|
(General theory, scattering mechanisms)
|
|
72.20.My
|
(Galvanomagnetic and other magnetotransport effects)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
Corresponding Authors:
H. Ez-Zahraouy
E-mail: ezahamid@fsr.ac.ma
|
Cite this article:
E. Salmani, A. Benyoussef, H. Ez-Zahraouy, E. H. Saidi, O. Mounkachi First-principles study and electronic structures of Mn-doped ultrathin ZnO nanofilms 2012 Chin. Phys. B 21 106601
|
[1] |
Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M and Hosono H 2003 Science 300 1269
|
[2] |
Nakada T, Hirabayashi Y, Tokado T, Ohmori D and Mise T 2004 Sol. Energy 77 739
|
[3] |
Lee S Y, Shim E S, Kang H S, Pang S S and Kang J S 2005 Thin Solid Films 437 31
|
[4] |
Könenkamp R, Word R C and Schlegel C 2004 Appl. Phys. Lett. 85 6004
|
[5] |
Mckinstry S T and Muralt P 2004 J. Electroceram. 12 7
|
[6] |
Wang Z L, Kong X Y, Ding Y, Gao P, Hughes W L, Yang R and Zhang Y 2004 Adv. Funct. Mater. 14 943
|
[7] |
Wagh M S, Patil L A, Seth T and Amalnerkar D P 2004 Mater. Chem. Phys. 84 228
|
[8] |
Ushio Y, Miyayama M and Yanagida H 1994 Sensor Actuator B 17 221
|
[9] |
Harima H 2004 J. Phys.: Condens. Matter 16 S5653
|
[10] |
Pearton S J, Heo W H, Ivill M, Norton D P and Steiner T 2004 Semicond. Sci. Technol. 19 R59
|
[11] |
Nishii J, Hossain F M, Takagi S, Aita T, Saikusa K, Ohmaki Y, Ohkubo I, Kishimoto S, Ohtomo A, Fukumura T, Matsukura F, Ohno Y, Koinuma H, Ohno H and Kawasaki M 2003 Jpn. J. Appl. Phys. 42 L347
|
[12] |
Hossain F M, Nishii J, Takagi S, Sugihara T, Ohtomo A, Fukumura T, Koinuma H, Ohno H and Kawasaki M 2004 Physica E 21 911
|
[13] |
Norris B J, Anderson J, Wager J F and Kszler D A 2003 J. Phys. D: Appl. Phys. 36 L105
|
[14] |
Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R and Choi H J 2002 Adv. Mater. 12 323
|
[15] |
Ito Y, Kushida K, Sugawara K and Takeuchi H 1995 IEEE Trans. Ultrasonics Ferroelectrics and Frequency Control 42 316
|
[16] |
Ryu H W, Park B S, Akbar S A, Lee W S, Hong K J, Seo Y J, Shin D C, Park J S and Choi G P 2003 Sensor Actuator B 96 717
|
[17] |
Sberveglieri G 1995 Sensor Actuator B 23 103
|
[18] |
Trivikrama Rao G S and Tarakarama Rao D 1999 Sensor Actuator B 55 166
|
[19] |
Cheng X L, Zhao H, Huo L H, Gao S and Zhao J G 2004 Sensor Actuator B 102 248
|
[20] |
Dietl T 2002 Semicond. Sci. Technol. 17 377
|
[21] |
Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Osorio J M, Johansson B and Gehring G A 2003 Nat. Mater. 2 673
|
[22] |
Li C, Guo W, Kong Y and Gao H 2007 Appl. Phys. Lett. 90 033108
|
[23] |
Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
|
[24] |
Akai H and Dederichs P H 1993 Phys. Rev. B 47 8739
|
[25] |
Akai H 1998 Phys. Rev. Lett. 81 3002
|
[26] |
Salmani E, Benyoussef A, Ez-Zahraouy H and Saidi E H 2011 Chin. Phys. B 20 086601
|
[27] |
MACHIKANEYAMA2002v09: Akai H, Department of Physics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka 560-0043, Japan, akai@phys.sci.osaka-u.ac.jp
|
[28] |
Balcerzak T 2004 J. Magn. Magn. Mater. 320 272-276, 1035
|
[29] |
Balcerzak T 2003 Physica A 317 213
|
[30] |
Jalbout A F, Chen H and Whittenburg S L 2002 Appl. Phys. Lett. 81 2217
|
[31] |
Demokritov S O, Wolf J A and Grünberg P 1993 J. Magn. Magn. Mater. 126 386
|
[32] |
Grünberg P 2001 J. Magn. Magn. Mater 226-230 1688
|
[33] |
Bruno P and Chappert C 1992 Phys. Rev. B 46 261
|
[34] |
Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2008 J. Magn. Magn. Mater. 320 2760
|
[35] |
Dietl T, Haury A and dAubigné Y M 1997 Phys. Rev. B 55 R3347
|
[36] |
Priour D J Jr, Hwang E H and Das Sarma S 2004 Phys. Rev. Lett. 92 117201
|
[37] |
Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2009 Physica A 388 3433
|
[38] |
Joseph M, Tabata H and Kawai T 1999 Jpn. J. Appl. Phys. 38 L1205
|
[39] |
Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B and Gehring G A 2003 Nat. Mater. 2 673
|
[40] |
Tiwari A, Jin C, Kvit A, Kumar D, Muth J F and Narayan J 2002 Solid State Commun. 121 371
|
[41] |
Lawes G, Ramirez A P, Risbud A S and Seshadri Ram 2005 Phys. Rev. B 71 045201
|
[42] |
Cheng X M and Chien C L 2003 J. Appl. Phys. 93 7876
|
[43] |
Jin Z, Yoo Y Z, Sekiguchi T, Chikyow T, Ofuchi H, Fujioka H, Oshima M and Koinuma H 2003 Appl. Phys. Lett. 83 39
|
[44] |
Sato K and Katayama-Yoshida H 2001 Jpn. J. Appl. Phys. 40 L485
|
[45] |
Xu Q, Schmidt H, Hartmann L, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C and Grundmann M 2007 Appl. Phys. Lett. 91 092503
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|