Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 106601    DOI: 10.1088/1674-1056/21/10/106601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study and electronic structures of Mn-doped ultrathin ZnO nanofilms

E. Salmania, A. Benyoussefa, H. Ez-Zahraouya, E. H. Saidib, O. Mounkachic
a LMPHE (URAC 12), Departement de Physique, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco;
b LPHE, Departement de Physique, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco;
c Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat, Morocco
Abstract  The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms. The band structure calculation shows that the band gaps of ZnO films with 2, 4, and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness. However, the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively, while they exhibit spin glass phases for higher Mn concentrations. It is also found, on the one hand, that the spin glass phase turns into the ferromagnetic one, with the substitution of nitrogen atoms for oxygen atoms, for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively. On the other hand, the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities, while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system. Moreover, it is shown that using the effective field theory for ferromagnetic system, the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction.
Keywords:  ultra thin film      ZnO      ab initio      electronic structure      magnetic properties      effective field theory  
Received:  29 January 2012      Revised:  03 April 2012      Accepted manuscript online: 
PACS:  66.30.Xj (Thermal diffusivity)  
  72.20.Dp (General theory, scattering mechanisms)  
  72.20.My (Galvanomagnetic and other magnetotransport effects)  
  72.25.Dc (Spin polarized transport in semiconductors)  
Corresponding Authors:  H. Ez-Zahraouy     E-mail:  ezahamid@fsr.ac.ma

Cite this article: 

E. Salmani, A. Benyoussef, H. Ez-Zahraouy, E. H. Saidi, O. Mounkachi First-principles study and electronic structures of Mn-doped ultrathin ZnO nanofilms 2012 Chin. Phys. B 21 106601

[1] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M and Hosono H 2003 Science 300 1269
[2] Nakada T, Hirabayashi Y, Tokado T, Ohmori D and Mise T 2004 Sol. Energy 77 739
[3] Lee S Y, Shim E S, Kang H S, Pang S S and Kang J S 2005 Thin Solid Films 437 31
[4] Könenkamp R, Word R C and Schlegel C 2004 Appl. Phys. Lett. 85 6004
[5] Mckinstry S T and Muralt P 2004 J. Electroceram. 12 7
[6] Wang Z L, Kong X Y, Ding Y, Gao P, Hughes W L, Yang R and Zhang Y 2004 Adv. Funct. Mater. 14 943
[7] Wagh M S, Patil L A, Seth T and Amalnerkar D P 2004 Mater. Chem. Phys. 84 228
[8] Ushio Y, Miyayama M and Yanagida H 1994 Sensor Actuator B 17 221
[9] Harima H 2004 J. Phys.: Condens. Matter 16 S5653
[10] Pearton S J, Heo W H, Ivill M, Norton D P and Steiner T 2004 Semicond. Sci. Technol. 19 R59
[11] Nishii J, Hossain F M, Takagi S, Aita T, Saikusa K, Ohmaki Y, Ohkubo I, Kishimoto S, Ohtomo A, Fukumura T, Matsukura F, Ohno Y, Koinuma H, Ohno H and Kawasaki M 2003 Jpn. J. Appl. Phys. 42 L347
[12] Hossain F M, Nishii J, Takagi S, Sugihara T, Ohtomo A, Fukumura T, Koinuma H, Ohno H and Kawasaki M 2004 Physica E 21 911
[13] Norris B J, Anderson J, Wager J F and Kszler D A 2003 J. Phys. D: Appl. Phys. 36 L105
[14] Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R and Choi H J 2002 Adv. Mater. 12 323
[15] Ito Y, Kushida K, Sugawara K and Takeuchi H 1995 IEEE Trans. Ultrasonics Ferroelectrics and Frequency Control 42 316
[16] Ryu H W, Park B S, Akbar S A, Lee W S, Hong K J, Seo Y J, Shin D C, Park J S and Choi G P 2003 Sensor Actuator B 96 717
[17] Sberveglieri G 1995 Sensor Actuator B 23 103
[18] Trivikrama Rao G S and Tarakarama Rao D 1999 Sensor Actuator B 55 166
[19] Cheng X L, Zhao H, Huo L H, Gao S and Zhao J G 2004 Sensor Actuator B 102 248
[20] Dietl T 2002 Semicond. Sci. Technol. 17 377
[21] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Osorio J M, Johansson B and Gehring G A 2003 Nat. Mater. 2 673
[22] Li C, Guo W, Kong Y and Gao H 2007 Appl. Phys. Lett. 90 033108
[23] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
[24] Akai H and Dederichs P H 1993 Phys. Rev. B 47 8739
[25] Akai H 1998 Phys. Rev. Lett. 81 3002
[26] Salmani E, Benyoussef A, Ez-Zahraouy H and Saidi E H 2011 Chin. Phys. B 20 086601
[27] MACHIKANEYAMA2002v09: Akai H, Department of Physics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka 560-0043, Japan, akai@phys.sci.osaka-u.ac.jp
[28] Balcerzak T 2004 J. Magn. Magn. Mater. 320 272-276, 1035
[29] Balcerzak T 2003 Physica A 317 213
[30] Jalbout A F, Chen H and Whittenburg S L 2002 Appl. Phys. Lett. 81 2217
[31] Demokritov S O, Wolf J A and Grünberg P 1993 J. Magn. Magn. Mater. 126 386
[32] Grünberg P 2001 J. Magn. Magn. Mater 226-230 1688
[33] Bruno P and Chappert C 1992 Phys. Rev. B 46 261
[34] Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2008 J. Magn. Magn. Mater. 320 2760
[35] Dietl T, Haury A and dAubigné Y M 1997 Phys. Rev. B 55 R3347
[36] Priour D J Jr, Hwang E H and Das Sarma S 2004 Phys. Rev. Lett. 92 117201
[37] Mounkachi O, Benyoussef A, El Kenz A, Saidi E H and Hlil E K 2009 Physica A 388 3433
[38] Joseph M, Tabata H and Kawai T 1999 Jpn. J. Appl. Phys. 38 L1205
[39] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B and Gehring G A 2003 Nat. Mater. 2 673
[40] Tiwari A, Jin C, Kvit A, Kumar D, Muth J F and Narayan J 2002 Solid State Commun. 121 371
[41] Lawes G, Ramirez A P, Risbud A S and Seshadri Ram 2005 Phys. Rev. B 71 045201
[42] Cheng X M and Chien C L 2003 J. Appl. Phys. 93 7876
[43] Jin Z, Yoo Y Z, Sekiguchi T, Chikyow T, Ofuchi H, Fujioka H, Oshima M and Koinuma H 2003 Appl. Phys. Lett. 83 39
[44] Sato K and Katayama-Yoshida H 2001 Jpn. J. Appl. Phys. 40 L485
[45] Xu Q, Schmidt H, Hartmann L, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C and Grundmann M 2007 Appl. Phys. Lett. 91 092503
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[4] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[5] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[9] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[12] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[13] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[14] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[15] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
No Suggested Reading articles found!