Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 106801    DOI: 10.1088/1674-1056/21/10/106801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Tunable Ba0.5Sr0.5TiO3 film bulk acoustic resonators using SiO2/Mo Bragg reflectors

Yang Tian-Ying (杨天应), Jiang Shu-Wen (蒋书文), Li Ru-Guan (李汝冠), Jiang Bin (姜斌)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Tunable and switchable Ba0.5Sr0.5TiO3 film bulk acoustic resonators (FBARs) based on SiO2/Mo Bragg reflectors are explored, which can withstand high temperature for the deposition of BaxSr1-xTiO3 (BST) films at 800 ℃. The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect. The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing, while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias (< 45 V) while downwards at higher dc bias. The calculated relative tunability of shifts at series resonance frequency is around -2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias, which can be comparable to AlN FBARs. This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum (Mo) as the high acoustic impedance layer in a Bragg reflector, which not only provides excellent acoustic isolation from the substrate, but also improves the crystallinity of BST films withstanding higher deposition temperature.
Keywords:  BaxSr1-xTiO3      tunable film bulk acoustic wave resonator      ferroelectric      acoustic Bragg reflector  
Received:  04 March 2012      Revised:  28 April 2012      Accepted manuscript online: 
PACS:  68.60.Bs (Mechanical and acoustical properties)  
  72.50.+b (Acoustoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60871049 and 50972024).
Corresponding Authors:  Yang Tian-Ying, Jiang Shu-Wen     E-mail:  yangtianying521@163.com; jiangsw@uestc.edu.cn

Cite this article: 

Yang Tian-Ying (杨天应), Jiang Shu-Wen (蒋书文), Li Ru-Guan (李汝冠), Jiang Bin (姜斌) Tunable Ba0.5Sr0.5TiO3 film bulk acoustic resonators using SiO2/Mo Bragg reflectors 2012 Chin. Phys. B 21 106801

[1] Qin J R, Chen S M, Liang B and Liu B W 2012 Chin. Phys. B 21 029401
[2] Zhang C X, Nie Y H and Liang J Q 2008 Chin. Phys. B 17 2670
[3] Berge J, Norling M, Vorobiev A and Gevorgian S 2008 J. Appl. Phys. 103 064508
[4] Vendik I B, Turalchuk P A, Vendik O G and Berge J 2008 J. Appl. Phys. 103 014107
[5] Schreiter M, Gabl R, Pitzer D, Priming R and Wersing W 2004 J. Eur. Ceram. 24 1589
[6] Noeth A, Yamada T, Sherman V O, Muralt P, Tagantsev A K and Setter N 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 2487
[7] Guo Z R, Yang Z Q, Yin B X and Sun M Z 2010 Chin. Phys. B 19 116201
[8] Noeth A, Yamada T, Muralt P, Tagantsev A K and Setter N 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 378
[9] Tappe S, Böttger U and Waser R 2004 Appl. Phys. Lett. 85 624
[10] Turalchuk P, Vendik I, Vendik and Berge J 2008 Proceedings of the 38th European Microwave Conference, October 27-31, 2008, Amsterdam, Netherlande, p. 1695
[11] Zhu X E, Lee V, Phillips J and Mortazawi A 2009 IEEE Microw. Wireless Componen. Lett. 19 359
[12] Zhu X E, Phillips J D and Mortazawi A 2007 Proceedings of International Microwave Symposium, June 3-8, 2007, Hawaii, USA, p. 671
[13] Mikhailov A, Prudan A, Ptashnik S, Samoilova T and Kozyrev A 2010 Proceedings of the 40th European Microwave Conference, September 28-30, 2010, Paris, France, p. 791
[14] Zhao H J 2012 Chin. Phys. B 21 087104
[15] Xiong K, Xiao X, Hu Y T, Li Z Y, Chu T, Yu Y D and Yu J Zh 2012 Chin. Phys. B 21 074203
[16] Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z and Qu S B 2011 Chin. Phys. B 20 014101
[17] Huang Q Z, Yu J Z, Chen S W, Xu X J, Han W H and Fang Z C 2008 Chin. Phys. B 17 2562
[18] Meng X Z, Wang M Z and Ren Z M 2011 Chin. Phys. B 20 050702
[19] Vorobievl A and Gevorgian S 2010 IEEE Microwave Symp. Digest, MTTS Int. 57 379
[20] Berge J, Vorobiev A, Steichen W and Gevorgian S 2007 IEEE Trans. Microw. Wireless Comput. Lett. 17 655
[21] Vorobieva A and Gevorgian S 2010 Appl. Phys. Lett. 96 212904
[22] Vorobiev A, Berge J, Norling M and Gevorgian S 2010 Proceedings of the 10th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, January 11-13, New Orleans, USA, p. 41
[23] Saddik G N, Boesch D S, Stemmer S and York R A 2007 Appl. Phys. Lett. 91 043501
[24] Volatier A, Defaÿ E, Aïd M, N'hari A, Ancey P and Dubus B 2008 Appl. Phys. Lett. 92 032906
[25] Sanchez S, Rhun G L, Suhm A and Defaÿ E 2010 Proceedings of the 40th European Microwave Conference, Septembe 28-30, Paris, France, p. 799
[26] Noeth A, Yamada T, Sherman V O, Muralt P, Tagantsev A K and Setter N 2007 J. Appl. Phys. 102 114110
[27] Noeth A, Yamada T, Tagantsev A K and Setter N 2008 J. Appl. Phys. 104 094102
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[4] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[5] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[6] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[9] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[10] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[11] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[12] Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武). Chin. Phys. B, 2021, 30(12): 127701.
[13] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[14] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[15] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
No Suggested Reading articles found!