Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017806    DOI: 10.1088/1674-1056/21/1/017806
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The characteristics of sonoluminescence

An Yu(安宇) and Zhang Wen-Juan(张文娟)
Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  Cavitation luminescence is light emission from gases that are compressed to high temperature and high pressure inside a bubble or group of bubbles. The numerical simulation in this study indicates that if the temperature and pressure inside a bubble are not high enough, then dim and spectral line emission dominates. However, if the temperature and pressure inside the bubble are very high, then the light is bright and a continuum spectrum will be generated. Calculations of the spectrum using modified equations of bubble motion can simulate the spectral profile well. However, pulse width calculations using these equations only partly agree with the experimental results.
Keywords:  sonoluminescence      spectrum      pulse width  
Received:  17 May 2011      Revised:  25 June 2011      Accepted manuscript online: 
PACS:  78.60.Mq (Sonoluminescence, triboluminescence)  
  32.30.-r (Atomic spectra?)  
  33.20.-t (Molecular spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974116).

Cite this article: 

An Yu(安宇) and Zhang Wen-Juan(张文娟) The characteristics of sonoluminescence 2012 Chin. Phys. B 21 017806

[1] Gaitan D F, Crum L A, Church C C and Roy R 1992 J. Acoust. Soc. Am. 91 3166
[2] Barber B P and Putterman S J 1991 Nature 352 318
[3] Frommhold L 1998 Phys. Rev. E 58 1899
[4] Yasui K 1999 Phys. Rev. E 60 1754
[5] Hilgenfeldt S, Grossmann S and Lohse D 1999 Nature 398 402
[6] An Y 2006 Phys. Rev. E 74 026304
[7] An Y 2011 Sci. Sin. Phys. Mech. Astron. 41 343 (in Chinese)
[8] Lohse D, Brenner M P, Dupont T F, Hilgenfeldt S and Johnston B 1997 Phys. Rev. Lett. 78 1359
[9] An Y and Li C 2008 Phys. Rev. E 78 046313
[10] An Y and Li C 2009 Phys. Rev. E 80 046320
[11] Young J B, Nelson J A and Kang W 2001 Phys. Rev. Lett. 86 2673
[12] Chen W Z, Huang W, Liang Y, Gao X X and Cui W C 2008 Phys. Rev. E 78 035301(R)
[13] Rayleigh L 1917 Philos. Mag. 34 94
[14] Plesset M 1949 J. Appl. Mech. 16 277
[15] Noltingk B and Neppiras E 1950 Proc. Phys. Soc. London Sect. B 63 674
[16] Keller J B and Kolodner I I 1956 J. Appl. Phys. 27 1152
[17] Gilmore F R 1950 Caltech Hydrodynamics Laboratory Report No. 26-4
[18] Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628
[19] Prosperetti A and Lezzi A 1986 J. Fluid Mech. 168 457
[20] An Y and Ying C F 2005 Phys. Rev. E 71 036308
[21] Hammer D and Frommhold L 2002 Phys. Rev. E 65 046309
[22] Barber B P, Hiller R A, Lofstedt R, Putterman S J and Weninger K R 1997 Phys. Rep. 281 65
[23] Holt R G and Gaitan D F 1996 Phys. Rev. Lett. 77 3791
[24] Gaitan D F and Holt R G 1999 Phys. Rev. E 59 5495
[25] Hilgenfeldt S, Lohse D and Brenner M 1996 Phys. Fluids 8 2808
[26] An Y, Lu T and Yang B 2005 Phys. Rev. E 71 026310
[27] Ralchenko Y, Kramida A E, Reader J and NIST ASD Team 2008 NIST Atomic Spectra Database (version 3.1.5) Online: http://physics.nist.gov/asd3
[28] Prosperetti A and Hao Y 1999 Phil. Trans. R. Soc. Lond. A 357 203
[29] An Y 2008 Chin. Phys. B 17 2984
[30] Yuan L, Cheng H Y, Chu M C and Leung P T 1998 Phys. Rev. E 57 4265
[31] Flannigan D J and Suslick K S 2005 Nature 434 52
[32] Li C H and An Y 2009 Sci. China Ser. G 52 593
[33] Hiller R A, Putterman S J and Weninger K R 1998 Phys. Rev. Lett. 80 1090
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[3] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[4] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[5] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[6] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[7] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[8] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[9] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[10] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[11] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[12] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[13] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[14] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[15] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
No Suggested Reading articles found!