Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 016202    DOI: 10.1088/1674-1056/21/1/016202
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Elastic properties of Nb-based alloys by using the density functional theory

Liu Zeng-Hui(刘增辉) and Shang Jia-Xiang (尚家香)
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  A first-principles density functional approach is used to study the electronic and the elastic properties of Nb15X(X = Ti, Zr, Hf, V, Ta, Cr, Mo, and W) alloys. The elastic constants c11 and c12, the shear modulus C', and the elastic modulus E〈100〉 are found to exhibit similar tendencies, each as a function of valence electron number per atom (EPA), while c44 seems unclear. Both c11 and c12 of Nb15X alloys increase monotonically with the increase of EPA. The C' and E〈100〉 also show similar tendencies. The elastic constants (except c44) increase slightly when alloying with neighbours of a higher d-transition series. Our results are supported by the bonding density distribution. When solute atoms change from Ti(Zr, Hf) to V(Ta) then to Cr(Mo, W), the bonding electron density between the central solute atom and its first neighbouring Nb atoms is increased and becomes more anisotropic, which indicates the strong interaction and thus enhances the elastic properties of Nb-Cr(Mo, W) alloys. Under uniaxial 〈100〉 tensile loading, alloyed elements with less (more) valence electrons decrease (increase) the ideal tensile strength.
Keywords:  Nb-based alloys      elastic properties      density functional calculations  
Received:  29 October 2010      Revised:  24 June 2011      Accepted manuscript online: 
PACS:  62.20.dq (Other elastic constants)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50771004).

Cite this article: 

Liu Zeng-Hui(刘增辉) and Shang Jia-Xiang (尚家香) Elastic properties of Nb-based alloys by using the density functional theory 2012 Chin. Phys. B 21 016202

[1] Slining J R and Koss D A 1973 Metall. Trans. 4 1261
[2] Tabaru T, Kim J H, Shobu K, Sakamoto M, Hirai H and Hanada S 2005 Metall. Mater. Trans. 36 617
[3] Koss D A 1971 Metall. Trans. 2 245
[4] Klein M J and Metcalfe A G 1973 Metall. Trans. 4 2441
[5] Rosenberg H W and Nix W D 1972 Metall. Trans. 4 1333
[6] Peters B C and Hendrickson A A 1970 Metall. Trans. 1 2271
[7] Söderlind Per, Eriksson Olle, Wills J M and Boring A M 1993 Phys. Rev. B 48 5844
[8] Grad G B, Blaha P, Luitz J, Schwarz K, Fernández Guillermet A and Sferco S J 2000 Phys. Rev. B 62 12743
[9] Luo W D, Roundy D, Cohen, Marvin L and Morris J W 2002 Phys. Rev. B 66 094110
[10] Nagasako N, Jahnátek M, Asahi R and Hafner J 2010 Phys. Rev. B 81 094108
[11] Ding Y, Ahuja R, Shu J F, Chow P Luo W and Mao H K 2007 Phys. Rev. Lett. 98 085502
[12] Koifmmode checkcelse vcfii L, Ma Y, Oganov A R, Souvatzis P and Ahuja R 2008 Phys. Rev. B 77 214101
[13] Nakagawa Y and Woods A D B 1963 Phys. Rev. Lett. 11 271
[14] Skriver and Hans L 1985 Phys. Rev. B 31 1909
[15] Landa A, Klepeis J, Söderlind P, Naumov I, Velikokhatnyi O, Vitos L and Ruban A 2006 J. Phys. Conden. Matter 18 5079
[16] Hideaki I, Nagasako N, Tadahiko F, Atsuo F, Kazutoshi M and Takashi S 2004 Phys. Rev. B 70 174113
[17] Landa A, Söderlind P, Ruban A V, Peil O E and Vitos L 2009 Phys. Rev. Lett. 103 235501
[18] http://www.crct.polymtl.ca/fact/documentation/SGTE/
[19] Liu N N, Song R B and Du D W 2009 Chin. Phys. B 18 1979
[20] Zhu J, Yu J X, Wang Y J, Chen X R and Jing F Q 2008 Chin. Phys. B 17 2216
[21] Zhou J J, Chen Y G,Wu C L, Pang L J, Zheng X and Gao T 2009 Acta Phys. Sin. 58 7044 (in Chinese)
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Perdew, John P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Bleskov I D, Smirnova E A, Vekilov Y K, Korzhavyi P A, Johansson B, Katsnelson M, Vitos L, Abrikosov I A and Isaev E I 2009 Appl. Phys. Lett. 94 161901
[25] Birch F 1947 Phys. Rev. 71 809
[26] Trivisonno J, Vatanayon S, Wilt M, Washick J and Reifenberger R 1973 J. Low Temper. Phys. 12 153
[27] Sun Z M, Denis M, Rajeev A, Sa L, Schneider J M 2004 Phys. Rev. B 70 092102
[28] Delaire O and Fultz B 2006 Phys. Rev. Lett. 97 245701
[29] Gschneidner Jr K A, Min J, Wang C Z, Ho K M, Russell A M, Mudryk Y, Becker A T and Larson J L 2009 Acta Mater. 57 5876
[30] Momma, Koichi and Izumi F 2008 J. Appl. Crystallog. 41 653
[1] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[2] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[3] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[4] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[5] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[6] First-principles study of structural, mechanical, and electronic properties of W alloying with Zr
Ning-Ning Zhang(张宁宁), Yu-Juan Zhang(张玉娟), Yu Yang(杨宇), Ping Zhang(张平), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(4): 046301.
[7] Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超). Chin. Phys. B, 2019, 28(2): 026201.
[8] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[9] The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations
Baokun Lu(路宝坤), Chongyu Wang(王崇愚). Chin. Phys. B, 2018, 27(7): 077104.
[10] Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation
Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞). Chin. Phys. B, 2018, 27(5): 057101.
[11] The structure and elasticity of phase B silicates under high pressure by first principles simulation
Lei Liu(刘雷), Li Yi(易丽), Hong Liu(刘红), Ying Li(李营), Chun-Qiang Zhuang(庄春强), Long-Xing Yang(杨龙星), Gui-Ping Liu(刘桂平). Chin. Phys. B, 2018, 27(4): 047402.
[12] First principles study of ceramic materials (IVB group carbides) under ultrafast laser irradiation
Nan-Lin He(何南燐), Xin-Lu Cheng(程新路), Hong Zhang(张红), Gai-Qin Yan(闫改琴), Jia Zhang(张佳). Chin. Phys. B, 2018, 27(3): 036301.
[13] First-principles investigations on the mechanical, thermal,electronic, and optical properties of the defect perovskites Cs2SnX6 (X= Cl, Br, I)
Hai-Ming Huang(黄海铭), Zhen-Yi Jiang(姜振益), Shi-Jun Luo(罗时军). Chin. Phys. B, 2017, 26(9): 096301.
[14] Elastic properties of CaCO3 high pressure phases from first principles
Dan Huang(黄丹), Hong Liu(刘红), Ming-Qiang Hou(侯明强), Meng-Yu Xie(谢梦雨), Ya-Fei Lu(鹿亚飞), Lei Liu(刘雷), Li Yi(易丽), Yue-Ju Cui(崔月菊), Ying Li(李营), Li-Wei Deng(邓力维), Jian-Guo Du(杜建国). Chin. Phys. B, 2017, 26(8): 089101.
[15] Structural, elastic, and vibrational properties of phase H: A first-principles simulation
Chao-Jia Lv(吕超甲), Lei Liu(刘雷), Yang Gao(高阳), Hong Liu(刘红), Li Yi(易丽), Chun-Qiang Zhuang(庄春强), Ying Li(李营), . Chin. Phys. B, 2017, 26(6): 067401.
No Suggested Reading articles found!