Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 016203    DOI: 10.1088/1674-1056/21/1/016203
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influences of surface effects and large deformation on the resonant properties of ultrathin silicon nanocantilevers

Zhang Jia-Hong(张加宏)a), Li Min(李敏)a), Gu Fang(顾芳)b), and Liu Qing-Quan(刘清惓)a)
a Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044, China; b College of Math & Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract  The purpose of the present work is to quantify the influences of the discrete nature, the surface effects, and the large deformation on the bending resonant properties of long and ultrathin 〈100〉 silicon nanocantilevers. We accomplish this by using an analytical semi-continuum Keating model within the framework of nonlinear, finite deformation kinematics. The semi-continuum model shows that the elastic behaviors of the silicon nanocantilevers are size-dependent and surface-dependent, which agrees well with the molecular dynamics results. It also indicates that the dominant effect on the fundamental resonant frequency shift of the silicon nanocantilever is adsorption-induced surface stress, followed by the discrete nature and surface reconstruction, whereas surface relaxation has the least effect. In particular, it is found that a large deformation tends to increase the nonlinear fundamental frequency of the silicon nanocantilever, depending not only on its size but also on the surface effects. Finally, the resonant frequency shifts due to the adsorption-induced surface stress predicted by the current model are quantitatively compared with those obtained from the experimental measurement and the other existing approach. It is noticed that the length-to-thickness ratio is the key parameter that correlates the deviations in the resonant frequencies predicted from the current model and the empirical formula.
Keywords:  resonant properties      elastic properties      surface effects      silicon nanocantilevers  
Received:  10 August 2011      Revised:  14 October 2011      Accepted manuscript online: 
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  62.40.+i (Anelasticity, internal friction, stress relaxation, and mechanical resonances)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41075026), the Open Research Fund of Key Laboratory of MEMS of Ministry of Education, Southeast University, China (Grant Nos. 2009-03 and 2010-02), the Special Fund for Meteo

Cite this article: 

Zhang Jia-Hong(张加宏), Li Min(李敏), Gu Fang(顾芳), and Liu Qing-Quan(刘清惓) Influences of surface effects and large deformation on the resonant properties of ultrathin silicon nanocantilevers 2012 Chin. Phys. B 21 016203

[1] Craighead H G 2000 Science 290 1532
[2] Li X X, Ono T, Wang Y L and Esashi M 2003 Appl. Phys. Lett. 83 3081
[3] Kizuka T, Takatani Y, Asaka K and Yoshizaki R 2005 Phys. Rev. B 72 035333
[4] Cui Y, Zhong Z H, Wang D L, Wang W U and Lieber C M 2003 Nano Lett. 3 149
[5] Li D, Wu Y, Kim P, Shi L, Yang P and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[6] Wu Z Y, Liu K X and Ren X T 2010 Chin. Phys. B 19 097806
[7] Zhang J H, Huang Q A, Yu H and Lei S Y 2008 Chin. Phys. B 17 4292
[8] Yang Y L and Li X X 2011 Nanotechnology 22 015501
[9] Soon B W, Neuzil P, Wong C C, Reboud J, Feng H H and Lee C K 2010 Procedia Engineering 5 1127
[10] Agarwal A, Buddharaju K, Lao I K, Singh N, Balasubramanian N and Kwong D L 2008 Sensor. Actuat. A 145-146 207
[11] Feng X L, He R R, Yang P D and Roukes M L 2007 Nano Lett. 7 1953
[12] Shim H W, Zhou L G, Huang H C and Cale T S 2005 Appl. Phys. Lett. 86 151912
[13] Zhang J H, Huang Q A, Yu H and Wang J 2009 J. Phys. D: Appl. Phys. 42 045409
[14] Guo J G and Zhao Y P 2007 Nanotechnology 18 295701
[15] Dingreville R, Qu J M and Cherkaoui M 2005 J. Mech. Phys. Solids 53 1827
[16] Miller R E and Shenoy V B 2000 Nanotechnology 11 139
[17] Wang J, Huang Q A and Yu H 2008 Chin. Phys. Lett. 25 1403
[18] Fu Y M, Zhang J and Jiang Y J 2010 Physica E 42 2268
[19] Liang L H, Ma H S and Wei Y G 2011 J. Nanomater. 2011 670857
[20] Sadeghian H, Goosen J F L, Bossche A, Thijsse B J and van Keulen F 2010 Thin Solid Films 518 3273
[21] Lee B and Rudd R E 2007 Phys. Rev. B 75 195328
[22] Park H S 2008 J. Appl. Phys. 103 123504
[23] Park H S 2009 Nanotechnology 20 115701
[24] Feng Y K, Liu Y L and Wang B 2011 Acta Mech. 217 149
[25] McFarland A W, Poggi M A, Doyle M J, Bottomley L A and Colton J S 2005 Appl. Phys. Lett. 87 053505
[26] Zhang J H, Gu F, Liu Q Q, Gu B and Li M 2010 Acta Phys. Sin. 59 4226 (in Chinese)
[27] Jia Z M, Yang G Q, Cheng Z N, Liu X H and Zou S C 1994 Acta Phys. Sin. 43 609 (in Chinese)
[28] Keating P N 1966 Phys. Rev. 145 637
[29] Rücker H and Methfessel M 1995 Phys. Rev. B 52 11059
[30] Batra I P 1990 Phys. Rev. B 41 5048
[31] Sun C T and Zhang H 2003 J. Appl. Phys. 93 1212
[32] Huang D W 2008 Int. J. Solids Struct. 45 568
[33] Carr D W, Evoy S, Sekaric L, Craighead H G and Parpia J M 1999 Appl. Phys. Lett. 75 920
[34] San Paulo A, Black J P, White R M and Bokor J 2007it Appl. Phys. Lett. 91 053116
[35] Cao G B, Chen Y F, Jiao J W and Wang Y L 2007 Mech. Res. Commun. 34 503
[36] Gu F, Zhang J H, Yang L J and Gu B 2011 Acta Phys. Sin. 60 056103 (in Chinese)
[1] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[2] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[3] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[4] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[5] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[6] First-principles study of structural, mechanical, and electronic properties of W alloying with Zr
Ning-Ning Zhang(张宁宁), Yu-Juan Zhang(张玉娟), Yu Yang(杨宇), Ping Zhang(张平), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(4): 046301.
[7] Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超). Chin. Phys. B, 2019, 28(2): 026201.
[8] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[9] The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations
Baokun Lu(路宝坤), Chongyu Wang(王崇愚). Chin. Phys. B, 2018, 27(7): 077104.
[10] Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation
Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞). Chin. Phys. B, 2018, 27(5): 057101.
[11] The structure and elasticity of phase B silicates under high pressure by first principles simulation
Lei Liu(刘雷), Li Yi(易丽), Hong Liu(刘红), Ying Li(李营), Chun-Qiang Zhuang(庄春强), Long-Xing Yang(杨龙星), Gui-Ping Liu(刘桂平). Chin. Phys. B, 2018, 27(4): 047402.
[12] First principles study of ceramic materials (IVB group carbides) under ultrafast laser irradiation
Nan-Lin He(何南燐), Xin-Lu Cheng(程新路), Hong Zhang(张红), Gai-Qin Yan(闫改琴), Jia Zhang(张佳). Chin. Phys. B, 2018, 27(3): 036301.
[13] First-principles investigations on the mechanical, thermal,electronic, and optical properties of the defect perovskites Cs2SnX6 (X= Cl, Br, I)
Hai-Ming Huang(黄海铭), Zhen-Yi Jiang(姜振益), Shi-Jun Luo(罗时军). Chin. Phys. B, 2017, 26(9): 096301.
[14] Elastic properties of CaCO3 high pressure phases from first principles
Dan Huang(黄丹), Hong Liu(刘红), Ming-Qiang Hou(侯明强), Meng-Yu Xie(谢梦雨), Ya-Fei Lu(鹿亚飞), Lei Liu(刘雷), Li Yi(易丽), Yue-Ju Cui(崔月菊), Ying Li(李营), Li-Wei Deng(邓力维), Jian-Guo Du(杜建国). Chin. Phys. B, 2017, 26(8): 089101.
[15] Structural, elastic, and vibrational properties of phase H: A first-principles simulation
Chao-Jia Lv(吕超甲), Lei Liu(刘雷), Yang Gao(高阳), Hong Liu(刘红), Li Yi(易丽), Chun-Qiang Zhuang(庄春强), Ying Li(李营), . Chin. Phys. B, 2017, 26(6): 067401.
No Suggested Reading articles found!