Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067401    DOI: 10.1088/1674-1056/26/6/067401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, elastic, and vibrational properties of phase H: A first-principles simulation

Chao-Jia Lv(吕超甲)1, Lei Liu(刘雷)1,2, Yang Gao(高阳)3, Hong Liu(刘红)1, Li Yi(易丽)1, Chun-Qiang Zhuang(庄春强)4, Ying Li(李营)1,2, 1
1 Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China;
2 National Key Laboratory of Shock Wave and Detonation Physics, Mianyang 621000, China;
3 Department of Mechanical Engineering, Texas Tech University, Lubbock 79409, USA;
4 Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
Abstract  Phase H (MgSiO4H2), one of the dense hydrous magnesium silicates (DHMSs), is supposed to be vital to transporting water into the lower mantle. Here the crystal structure, elasticity and Raman vibrational properties of the two possible structures of phase H with Pm and P2/m symmetry under high pressures are evaluated by first-principles simulations. The cell parameters, elastic and Raman vibrational properties of the Pm symmetry become the same as the P2/m symmetry at~30 GPa. The symmetrization of hydrogen bonds of the Pm symmetry at~30 GPa results in this structural transformation from Pm to P2/m. Seismic wave velocities of phase H are calculated in a range from 0 GPa to 100 GPa and the results testify the existence and stability of phase H in the lower mantle. The azimuthal anisotropies for phase H are AP0=14.7%, AS0=21.2% (P2/m symmetry) and AP0=16.4%, AS0=27.1% (Pm symmetry) at 0 GPa, and increase to AP30=17.9%, AS30=40.0% (P2/m symmetry) and AP30=19.2%, AS30=37.8% (Pm symmetry) at 30 GPa. The maximum VP direction for phase H is[101] and the minimum direction is[110]. The anisotropic results of seismic wave velocities imply that phase H might be a source of seismic anisotropy in the lower mantle. Furthermore, Raman vibrational modes are analyzed to figure out the effect of symmetrization of hydrogen bonds on Raman vibrational pattern and the dependence of Raman spectrum on pressure. Our results may lead to an in-depth understanding of the stability of phase H in the mantle.
Keywords:  phase H      elastic properties      Raman properties      first principles  
Received:  08 October 2016      Revised:  02 March 2017      Accepted manuscript online: 
PACS:  74.25.nd (Raman and optical spectroscopy)  
  62.50.-p (High-pressure effects in solids and liquids)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant Nos. 2016IES010104 and 2012ES0408) and the National Natural Science Foundation of China (Grant Nos. 41174071, 41273073, 41373060, and 41573121).
Corresponding Authors:  Lei Liu     E-mail:  liulei@cea-ies.ac.cn

Cite this article: 

Chao-Jia Lv(吕超甲), Lei Liu(刘雷), Yang Gao(高阳), Hong Liu(刘红), Li Yi(易丽), Chun-Qiang Zhuang(庄春强), Ying Li(李营), Structural, elastic, and vibrational properties of phase H: A first-principles simulation 2017 Chin. Phys. B 26 067401

[1] Huang X, Xu Y and Karato S 2005 Nature 434 746
[2] Faccenda M, Burlini L, Gerya T V and Mainprice D 2008 Nature 455 1097
[3] Komabayashi T, Omori S and Maruyama S 2005 Phys. Earth Planet. Int. 153 191
[4] Akimoto S and Akaogi M 1980 Phys. Earth Planet. Int. 23 268
[5] Ohtani E, Toma M, Litasov K, Kubo T and Suzuki A 2001 Phys. Earth Planet. Int. 124 105
[6] Ghosh S and Schmidt M W 2014 Geochim. Cosmochim. Acta 145 72
[7] Sclar C B, Carrison L C and Schwartz C M 1965 Trans. Am. Geophys. Union 46 184
[8] Ohtani E, Mizobata H and Yurimoto H 2000 Phys. Chem. Miner. 27 533
[9] Komabayashi T, Omori S and Maruyama S 2004 J. Geophys. Res.: Solid Earth 109 B03206
[10] Melekhova E, Schmidt M W, Ulmer P and Pettke T 2007 Geochim. Cosmochim. Acta 71 3348
[11] Liu L 1987 Phys. Earth Planet. Int. 49 142
[12] Frost D J and Fei Y 1998 J. Geophys. Res.: Solid Earth 103 7463
[13] Shieh S R, Mao H, Hemley R J and Li C M 1998 Earth Planet. Sci. Lett. 159 13
[14] Tsuchiya J 2013 Geophys. Res. Lett. 40 4570
[15] Bindi L, Nishi M, Tsuchiya J and Irifune T 2014 Am. Mineral. 99 1802
[16] Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K and Higo Y 2014 Nat. Geosci. 7 224
[17] Tsuchiya J and Mookherjee M 2015 Sci. Rep. 5 15534
[18] Refson K, Tulip P R and Clark S J 2006 Phys. Rev. B 73 155114
[19] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[20] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[21] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Kristallogr. 220 567
[22] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[23] Hamann D R 1997 Phys. Rev. B 55 R10157
[24] Umemoto K, Wentzcovitch R M, Baroni S and De G S 2004 Phys. Rev. Lett. 92 105502
[25] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Pfrommer B G, Cote M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[28] Karki B B, Stixrude L and Wentzcovitch R M 2001 Rev. Geophys. 39 507
[29] Baroni S, De G S, Dal C A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[30] Gonze X 1997 Phys. Rev. B 55 10337
[31] Porezag D and Pederson M R 1996 Phys. Rev. B 54 7830
[32] Refson K, Tulip P R and Clark S J 2006 Phys. Rev. B 136 864
[33] Holzapfel W B 1972 J. Chem. Phys. 56 712
[34] Pruzan P, Chervin J C, Wolanin E, Canny B, Gauthier M and Hanfland M 2003 J. Raman Spectrosc. 34 591
[35] Tsuchiya J, Tsuchiya T and Tsuneyuki S 2005 Am. Mineral. 90 44
[36] Sano-Furukawa A, Komatsu K, Vanpeteghem C B and Ohtani E 2008 Am. Mineral. 93 1558
[37] Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 244
[38] Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J and Mao H K 1996 Science 273 218
[39] Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N, Ohishi Y and Nishijima M 2014 Earth Planet. Sci. Lett. 401 12
[40] Wen L and Helmberger D V 1998 Science 279 1701
[41] Richards M A, Duncan R A and Courtillot V E 1989 Science 246 103
[42] Musgrave M J P 1970 Crystal Acoustics (San Fransisco: Holden-Day)
[43] Walker A M and Wookey J 2012 Comput. Geosci. 49 81
[44] Fateley W G, McDevitt N T and Dollish F R 1971 Appl. Spectrosc. 25 155
[45] Delattre S, Balan E, Lazzeri M, Blanchard M, Guillaumet M, Beyssac O, Haussuhl E, Winkler B, Salje E K H and Calas G 2012 Phys. Chem. Miner. 39 93
[46] Huang X L, Li F F, Huang Y P, Wu G, Li X, Zhou Q, Liu B B and Cui T 2016 Chin. Phys. B 25 037401
[47] Umemoto K and Wentzcovitch R M 2005 Phys. Rev. B 71 012102
[48] Hemley R J, Jephcoat A P, Mao H K, Zha C S, Finger L W and Cox D E 1987 Nature 330 737
[49] Mainprice D, Page Y L, Rodgers J and Jouanna P 2007 Earth Planet. Sci. Lett. 259 283
[50] Tsuchiya J and Tsuchiya T 2009 Phys. Earth Planet. Int. 174 122
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[11] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[12] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[13] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[14] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[15] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
No Suggested Reading articles found!