CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor |
Yu Liang-Hong(於亮红)a), Liang Xiao-Yan(梁晓燕)a)†, Ren Zhi-Jun(任志君)a), Wang Li(王利)b), Xu Yi(许毅)a), Lu Xiao-Ming(陆效明)a), and Yu Guo-Hao(于国浩)b) |
a State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; b Joint Laboratory of High Power Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract The phase conjugation between the deformable mirror and the wavefront sensor in the aberration correction of a terawatt Ti:sapphire laser is studied experimentally and theoretically in this paper. At varying values of phase-conjugation precision, we focus the corresponding beams into spots of the same size of 5.1 μm×5.3 μm with a f/4 parabola in the 32 TW/36 fs Ti:sapphire laser system. The results show that the precision of conjugation can induce an intensity modulation but does not significantly affect the wavefront correction.
|
Received: 18 January 2011
Revised: 06 June 2011
Accepted manuscript online:
|
PACS:
|
42.15.Dp
|
(Wave fronts and ray tracing)
|
|
42.60.-v
|
(Laser optical systems: design and operation)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB808101) and the National Natural Science Foundation of China (Grant No. 60921004). |
Cite this article:
Yu Liang-Hong(於亮红), Liang Xiao-Yan(梁晓燕), Ren Zhi-Jun(任志君), Wang Li(王利), Xu Yi(许毅), Lu Xiao-Ming(陆效明), and Yu Guo-Hao(于国浩) Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor 2012 Chin. Phys. B 21 014201
|
[1] |
Liang X Y, Leng Y X, Wang C, Li C, Lin L H, Zhao B Z, Jiang Y H, Lu X M, Hu M Y, Zhang C M, Lu H H, Yin D J, Jiang Y L, Lu X Q, Wei H, Zhu J Q, Li R X and Xu Z Z 2007 Opt. Express 15 15335
|
[2] |
Chen X W, Leng Y X, Zhu Y, Li R X and Xu Z Z 2006 Opt. Commun. 259 331
|
[3] |
Chen X W, Li X F, Liu J, Wei P F, Ge X C, Li R X and Xu Z Z 2007 Opt. Lett. 32 2402
|
[4] |
Umstadter D, Chen S Y, Maksimchuk A, Mourou G and Wagner R 1996 Science 273 472
|
[5] |
Workman J, Maksimchuk A, Liu X, Ellenberger U, Coe J S, Chien C Y and Umstadter D 1995 Phys. Rev. Lett. 75 2324
|
[6] |
Zheng Y H, Zeng Z N, Xiong H, Li R X, Xu Z Z, Peng Y, Yang X and Zen H P 2009 Appl. Phys. Lett. 95 141102
|
[7] |
Zheng Y H, Zeng Z N, Zou P, Zhang Li, Li X F, Liu P, Li R X and Xu Z Z 2009 Phys. Rev. Lett. 103 043904
|
[8] |
Zheng Y H, Zeng Z N, Li X F, Chen X W, Liu P, Xiong H, Lu H, Zhao S T, Wei P F, Zhang L, Wang Z G, Liu J, Cheng Y, Li R X and Xu Z Z 2008 Opt. Lett. 33 234
|
[9] |
Macklin J J, Kmetec J D and Gordon C L 1993 Phys. Rev. Lett. 70 766
|
[10] |
Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626
|
[11] |
Deutsch C, Furukawa H, Mima K, Murakami M and Nishihara K 1996 Phys. Rev. Lett. 77 2483
|
[12] |
Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W, Machinnon A J, Pennington D M, Perry M D, Philips T W, Roth M, Sangster T C, Singh M S, Snavely R A, Stoyer M A, Wilks S C and Yasuike K 2000 Phys. Plasmas 7 2076
|
[13] |
Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A and Snavely R A 2001 Phys. Plasmas 8 542
|
[14] |
Planchon T A, Rousseau J P, Burgy F, Che'riaux G and Chambaret J P 2005 Opt. Commun. 252 222
|
[15] |
Fourmaux S, Payeur S, Alexandrov A, Serbanescu C, Martin F, Ozaki T, Kudryashov A and Kieffer J C 2008 Opt. Express 16 11987
|
[16] |
Bahk S W, Rousseau P, Planchon T A, Chvykov V, Kalintchenko G, Maksimchuk A, Mourou G A and Yanovsky V 2004 Opt. Lett. 29 2837
|
[17] |
Liu C, Mu Q Q, Hu L F, Cao Z L and Xuan L 2010 Chin. Phys. B 19 064214
|
[18] |
Ning Y, Zhou H, Yu H, Rao C H and Jiang W H 2009 Chin. Phys. B 18 1089
|
[19] |
Liang X Y, Leng Y X, Lin L H, Lu H H, Wang W T, Jiang Y H, Shuai B, Peng H L, Zhao B Z, Wang C, Zhang W Q, Zhang Z Q, Li R X and Xu Z Z 2006 Opt. Lasers Eng. 44 130
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|