Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 014207    DOI: 10.1088/1674-1056/23/1/014207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler

Luo Wen (罗文)a b c, Geng Chao (耿超)a b, Wu Yun-Yun (武云云)a b c, Tan Yi (谭毅)a b c, Luo Qi (罗奇)a b c, Liu Hong-Mei (刘红梅)a b c, Li Xin-Yang (李新阳)a b
a Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China;
b Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;
c University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber-based free-space laser systems, where random angular jitters are the main influencing factors of fiber coupling. In this paper, we verified a new adaptive-optic device named adaptive fiber coupler (AFC) which could compensate angular jitters and improve the SMF coupling efficiency in some degree. Experiments of SMF coupling under the angular jitter situation using AFC have been achieved. Stochastic parallel gradient descent (SPGD) algorithm is employed as the control strategy, of which the iteration rate is 625 Hz. In closed loop, the coupling efficiency keeps above 65% when angular errors are below 80 μrad. The compensation bandwidth is 35 Hz at sine-jitter of 15 μrad amplitude with average coupling efficiency of above 60%. Also, experiments with simulated turbulence have been studied. The average coupling efficiency increases from 31.97% in open loop to 61.33% in closed loop, and mean square error (MSE) of coupling efficiency drops from 7.43% to 1.75%.
Keywords:  single-mode fiber coupling      adaptive fiber coupler      adaptive optics      free-space optical communication  
Received:  21 May 2013      Revised:  20 June 2013      Accepted manuscript online: 
PACS:  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.81.Wg (Other fiber-optical devices)  
  42.90.+m (Other topics in optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61205069).
Corresponding Authors:  Li Xin-Yang     E-mail:  xyli@ioe.ac.cn

Cite this article: 

Luo Wen (罗文), Geng Chao (耿超), Wu Yun-Yun (武云云), Tan Yi (谭毅), Luo Qi (罗奇), Liu Hong-Mei (刘红梅), Li Xin-Yang (李新阳) Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler 2014 Chin. Phys. B 23 014207

[1] Toyoshima M 2006 J. Opt. Soc. Am. A 23 2246
[2] Winzer P J and Leeb W R 1998 Opt. Lett. 23 986
[3] Ruilier C and Cassaing F 2001 J. Opt. Soc. Am. A 18 143
[4] Chen C Y, Yang H M, Wang H, Tong S F and Lou Y 2011 Appl. Opt. 50 307
[5] Dikmelik Y and Davidson F M 2005 Appl. Opt. 44 4946
[6] Song D Y, Hurh Y S, Cho J W, Lim J H, Lee D W, Lee J S and Chung Y C 2000 Opt. Express 7 280
[7] Weyrauch T, Vorontsov M A, Gowens J W and Bifano T G 2002 Proc. SPIE 4489 177
[8] Takenaka H, Toyoshima M and Takayama Y 2012 Opt. Express 20 15301
[9] Ma J, Zhao F, Tan L Y, Yu S Y and Han Q Q 2009 Appl. Opt. 48 5184
[10] Geng C, Li X Y, Zhang X J and Rao C H 2011 Acta Phys. Sin. 60 114202 (in Chinese)
[11] Geng C, Li X Y, Zhang X J and Rao C H 2011 Opt. Commun. 284 5531
[12] Geng C, Li X Y, Zhang X J and Rao C H 2012 Acta Phys. Sin. 61 034204 (in Chinese)
[13] Wang X, Wang X L, Zhou P, Su R T, Geng C, Li X Y, Xu X J and Shu B H 2013 Chin. Phys. B 22 024206
[14] Geng C, Tan Y, Mu J B and Li X Y 2013 Acta Phys. Sin. 62 024206 (in Chinese)
[15] Geng C, Zhao B Y, Zhang E T, Luo W, Tan Y, Zhu Y G, Yang H N, Mu J B, Li X Y, Duan K L and Zhao W 2013 IEEE Photon. Technol. Lett. 25 1286
[16] Goodman J 2011 Introduction to Fourier Optics (3nd edn.) (Beijing: Publishing House of Electronics Industry) pp. 47–57
[17] Toyoshima M, Jono T, Nakagawa K and Yamamoto A 2002 J. Opt. Soc. Am. A 19 567
[1] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[2] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[3] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[4] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
[5] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[6] Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics
Li Xuan(宣丽), Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海). Chin. Phys. B, 2016, 25(9): 094216.
[7] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[8] Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system
Cheng Sheng-Yi (程生毅), Liu Wen-Jin (刘文劲), Chen Shan-Qiu (陈善球), Dong Li-Zhi (董理治), Yang Ping (杨平), Xu Bing (许冰). Chin. Phys. B, 2015, 24(8): 084214.
[9] Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera
Liu Rui-Xue (刘瑞雪), Zheng Xian-Liang (郑贤良), Li Da-Yu (李大禹), Xia Ming-Liang (夏明亮), Hu Li-Fa (胡立发), Cao Zhao-Liang (曹召良), Mu Quan-Quan (穆全全), Xuan Li (宣丽). Chin. Phys. B, 2014, 23(9): 094211.
[10] Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor
Yu Liang-Hong(於亮红), Liang Xiao-Yan(梁晓燕), Ren Zhi-Jun(任志君), Wang Li(王利), Xu Yi(许毅), Lu Xiao-Ming(陆效明), and Yu Guo-Hao(于国浩) . Chin. Phys. B, 2012, 21(1): 014201.
[11] High precision Zernike modal gray map reconstruction for liquid crystal corrector
Liu Chao(刘超), Mu Quan-Quan(穆全全), Hu Li-Fa(胡立发), Cao Zhao-Liang(曹召良), and Xuan Li(宣丽). Chin. Phys. B, 2010, 19(6): 064214.
[12] Thermal stability test and analysis of a 20-actuator bimorph deformable mirror
Ning Yu(宁禹), Zhou Hong(周虹), Yu Hao(余浩), Rao Chang-Hui(饶长辉), and Jiang Wen-Han(姜文汉). Chin. Phys. B, 2009, 18(3): 1089-1095.
[13] Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device
Hu Li-Fa (姜宝光), Xuan Li (曹召良), Jiang Bao-Guang (穆全全), Cao Zhao-Liang (胡立发), Mu Quan-Quan (李超), Li Chao (宣丽). Chin. Phys. B, 2008, 17(12): 4529-4532.
No Suggested Reading articles found!