Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 094211    DOI: 10.1088/1674-1056/23/9/094211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera

Liu Rui-Xue (刘瑞雪)a b, Zheng Xian-Liang (郑贤良)a b c, Li Da-Yu (李大禹)a, Xia Ming-Liang (夏明亮)c, Hu Li-Fa (胡立发)a, Cao Zhao-Liang (曹召良)a, Mu Quan-Quan (穆全全)a, Xuan Li (宣丽)a
a State Key Lab of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
b University of Chinese Academy of Sciences, Beijing 100049, China;
c Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
Abstract  With the help of adaptive optics (AO) technology, cellular level imaging of living human retina can be achieved. Aiming to reduce distressing feelings and to avoid potential drug induced diseases, we attempted to image retina with dilated pupil and froze accommodation without drugs. An optimized liquid crystal adaptive optics camera was adopted for retinal imaging. A novel eye stared system was used for stimulating accommodation and fixating imaging area. Illumination sources and imaging camera kept linkage for focusing and imaging different layers. Four subjects with diverse degree of myopia were imaged. Based on the optical properties of the human eye, the eye stared system reduced the defocus to less than the typical ocular depth of focus. In this way, the illumination light can be projected on certain retina layer precisely. Since that the defocus had been compensated by the eye stared system, the adopted 512×512 liquid crystal spatial light modulator (LC-SLM) corrector provided the crucial spatial fidelity to fully compensate high-order aberrations. The Strehl ratio of a subject with -8 diopter myopia was improved to 0.78, which was nearly close to diffraction-limited imaging. By finely adjusting the axial displacement of illumination sources and imaging camera, cone photoreceptors, blood vessels and nerve fiber layer were clearly imaged successfully.
Keywords:  liquid crystal device      adaptive optics      retinal imaging  
Received:  09 December 2013      Revised:  10 February 2014      Accepted manuscript online: 
PACS:  42.70.Df (Liquid crystals)  
  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  42.66.Ew (Physiology of eye; optic-nerve structure and function)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60736042, 1174274, and 1174279) and the Plan for Scientific and Technology Development of Suzhou, China (Grant No. ZXS201001).
Corresponding Authors:  Xuan Li     E-mail:  xuanli@ciomp.ac.cn

Cite this article: 

Liu Rui-Xue (刘瑞雪), Zheng Xian-Liang (郑贤良), Li Da-Yu (李大禹), Xia Ming-Liang (夏明亮), Hu Li-Fa (胡立发), Cao Zhao-Liang (曹召良), Mu Quan-Quan (穆全全), Xuan Li (宣丽) Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera 2014 Chin. Phys. B 23 094211

[1] Kitaguchi Y, Fujikado T, Bessho K, Sakaguchi H, Gomi F, Yamaguchi T, Nakazawa N, Mihashi T, and Tano Y 2008 Ophthalmology 115 1771
[2] Zhong Z, Petrig B L, Qi X and Burns S A 2008 Opt. Express 16 12746
[3] Martin J A and Roorda A 2005 Ophthalmology 112 2219
[4] Duncan J L, Talcott K E, Ratnam K, Sundquist S M, Lucero A S, Day S, Zhang Y and Roorda A 2011 Invest. Ophthalmol. Vis. Sci. 52 1557
[5] Liang J, Williams D R and Miller D T 1997 J. Opt. Soc. Am. 14 2884
[6] Doble N, Miller D T, Yoon G and Williams D R 2007 Appl. Opt. 46 4501
[7] Roorda A and Williams D R 1999 Nature 397 520
[8] Zang Z G, Minato T, Navaretti P, Hinokuma Y, Duelk M, Velez C and Hamamoto K 2010 IEEE Photonics Technology Letters 22 721
[9] Zang Z G, Mukai K, Navaretti P, Duelk M, Velez C and Hamamoto K 2012 Appl. Phys. Lett. 100 031108
[10] Zang Z G, Mukai K, Navaretti P, Duelk M, Velez C and Hamamoto K 2011 IEEE Trans. Electron. E94c 862
[11] Dreher A W, Bille J F and Weinreb R N 1989 Appl. Opt. 28 804
[12] Doble N, Yoon G, Chen L, Bierden P, Singer B, Olivier S and Williams D R 2002 Opt. Lett. 27 1537
[13] Zhang Y, Poonja S and Roorda A 2006 Opt. Lett. 31 1268
[14] Hammer D X, Ferguson R D, Bigelow C E, Iftimia N V, Ustun T E and Burns S A 2006 Opt. Express 14 3354
[15] Grieve K, Tiruveedhula P, Zhang Y and Roorda A 2006 Opt. Express 14 12230
[16] Thibos L N and Bradley A 1997 Optom. Vis. Sci. 74 581
[17] Vargas-Martin F, Prieto P M and Artal P 1998 J. Opt. Soc. Am. A 15 2552
[18] Mu Q, Cao Z, Li D, Hu L and Xuan L 2007 Opt. Express 15 1946
[19] Liu C, Mu Q Q, Hu L F, Cao Z L and Xuan L 2010 Chin. Phys. B 19 064214
[20] Liu R, Qi Y, Zheng X, Xia M and Xuan L 2013 Photon. Res. 1 124
[21] Peng Z, Liu Y, Yao L, Cao Z, Mu Q, Hu L, Lu X, Xuan L and Zhang Z 2011 Chin. Phys. Lett. 28 094207
[22] Dai Q, Li Y, Wu R N, Geng Y, Quan W, Li Y Q, Peng Z H and Yao L S 2013 Acta Phys. Sin. 62 044219 (in Chinese)
[23] Zou Z F, Yao L S, Tang X Z, Ji X J and Xuan L 2008 Chin. Phys. Lett. 25 2524
[24] Liu Y J, Sun W M, Liu X Q, Yao L S, Lu X H and Xuan L 2012 Acta Phys. Sin. 61 114211 (in Chinese)
[25] Tang X Z, Peng Z H, Liu Y G, Lu X H and Xuan L 2010 Acta Phys. Sin. 59 6261 (in Chinese)
[26] Tang X Z, Lu X H, Peng Z H, Liu Y G and Xuan L 2010 Acta Phys. Sin. 59 4001 (in Chinese)
[27] Tian Y, Pan X, Wang C S, Zhang X Q and Zeng Y 2009 Acta Phys. Sin. 58 6979 (in Chinese)
[28] Cao Z L, Mu Q Q, Hu L F, Liu Y G and Xuan L 2007 Chin. Phys. 16 1665
[29] Lu R B, Xu K S, Zhang S Y, Gu X, Xing Z J, Deng H H, Gu J H, Xiao Z D and Lu Z H 1999 Chin. Phys. 8 670
[30] Li C, Xia M, Li D, Mu Q and Xuan L 2010 J. Biomed. Opt. 15 046009
[31] Kong N, Li C, Xia M, Li D, Qi Y and Xuan L 2012 J. Biomed. Opt. 17 026001
[32] Jiang B G, Cao Z L, Mu Q Q, Hu L F, Li C and Xuan L 2008 Chin. Phys. B 17 4529
[33] Liu R, Li D, Xia M, Kong N, Qi Y, Zheng X and Xuan L 2011 2nd International Symposium on Bioelectronics and Bioinformatics, November 3-5, 2011 Suzhou, China, p. 135
[34] Takeno K and Shirai T 2012 Opt. Commun. 285 2967
[35] Liu X A, Zhang J A, Wu L Y and Gan Y 2011 Chin. Phys. B 20 024211
[36] Ma J, Zheng Z G, Liu Y G and Xuan L 2011 Chin. Phys. B 20 024212
[37] Thibos L N, Hong X, Bradley A and Cheng X 2002 J. Opt. Soc. Am. A 19 2329
[38] Sawides L, Gambra E, Pascual D, Dorronsoro C and Marcos S 2010 J. Vis. 10 19
[39] Merino D, Dainty C, Bradu A and Podoleanu A G 2006 Opt. Express 14 3345
[40] Sulai Y N and Dubra A 2012 Biomed. Opt. Express 3 1647
[41] Institute A N S 2007 American National Standard for the Safe Use of Lasers (Orlando, FL: Laser Institute of America)
[42] Wang B and Ciuffreda K J 2006 Surv. Ophthalmol. 51 75
[43] Atchison D A and Smith G 2005 J. Opt. Soc. Am. A 22 29
[44] Ciuffreda K J 1991 Optom. Vis. Sci. 68 243
[45] Hennessy R T, Iida T, Shina K and Leibowitz H W 1976 Vision Res. 16 587
[46] Johnson C A 1976 J. Opt. Soc. Am. 66 138
[47] Klein S A 1998 J. Opt. Soc. Am. A 15 2580
[48] Goss D A and Grosvenor T 1996 J. Am. Optom. Assoc. 67 619
[49] Miller D, Thibos L and Hong X 2005 Opt. Express 13 275
[50] Yellott J I 1982 Vision Res. 22 1205
[1] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[2] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[3] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[4] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[5] Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics
Li Xuan(宣丽), Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海). Chin. Phys. B, 2016, 25(9): 094216.
[6] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[7] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
[8] Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system
Cheng Sheng-Yi (程生毅), Liu Wen-Jin (刘文劲), Chen Shan-Qiu (陈善球), Dong Li-Zhi (董理治), Yang Ping (杨平), Xu Bing (许冰). Chin. Phys. B, 2015, 24(8): 084214.
[9] Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler
Luo Wen (罗文), Geng Chao (耿超), Wu Yun-Yun (武云云), Tan Yi (谭毅), Luo Qi (罗奇), Liu Hong-Mei (刘红梅), Li Xin-Yang (李新阳). Chin. Phys. B, 2014, 23(1): 014207.
[10] Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor
Yu Liang-Hong(於亮红), Liang Xiao-Yan(梁晓燕), Ren Zhi-Jun(任志君), Wang Li(王利), Xu Yi(许毅), Lu Xiao-Ming(陆效明), and Yu Guo-Hao(于国浩) . Chin. Phys. B, 2012, 21(1): 014201.
[11] High precision Zernike modal gray map reconstruction for liquid crystal corrector
Liu Chao(刘超), Mu Quan-Quan(穆全全), Hu Li-Fa(胡立发), Cao Zhao-Liang(曹召良), and Xuan Li(宣丽). Chin. Phys. B, 2010, 19(6): 064214.
[12] Thermal stability test and analysis of a 20-actuator bimorph deformable mirror
Ning Yu(宁禹), Zhou Hong(周虹), Yu Hao(余浩), Rao Chang-Hui(饶长辉), and Jiang Wen-Han(姜文汉). Chin. Phys. B, 2009, 18(3): 1089-1095.
[13] Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device
Hu Li-Fa (姜宝光), Xuan Li (曹召良), Jiang Bao-Guang (穆全全), Cao Zhao-Liang (胡立发), Mu Quan-Quan (李超), Li Chao (宣丽). Chin. Phys. B, 2008, 17(12): 4529-4532.
No Suggested Reading articles found!