Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 014101    DOI: 10.1088/1674-1056/21/1/014101
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Energy unidirectional transmission in an asymmetrically finite transmission line

Tao Feng(陶锋)a)b), Chen Wei-Zhong(陈伟中) a)†, Xu Wen(许文)a), and Du Si-Dan(都思丹) c)
a Key Laboratory of Modern Acoustics of Ministry of Education, and Institute of Acoustics, Nanjing University, Nanjing 210093, China; b School of Electrical Engineering & Information, Anhui University of Technology, Ma’anshan 243002, China; c School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  The phenomenon of energy unidirectional transmission is numerically investigated by using a system of two coupled discrete nonlinear electrical transmission lines, each line of the network contains a finite number of cells and has different pass band structures, respectively. Using numerical simulations, we examine the frequency multiplication of the driving frequency and the lattice filtering effect in the line. These lead to the generation of energy unidirectional transmission. In the present work, energy is carried by the second harmonic wave in the pass band. In addition, we also study the dependence of the energy efficiency on the driving amplitude and other parameters of the model, such as the system size and the nonlinear coefficient, by calculation. Furthermore, after detailed numerical simulation, an experimental demonstration is realized. The experimental results agree with those in simulation qualitatively.
Keywords:  energy      unidirectional      nonlinear transmission line      linear wave  
Received:  17 June 2011      Revised:  30 July 2011      Accepted manuscript online: 
PACS:  41.20.-q (Applied classical electromagnetism)  
  05.60.Cd (Classical transport)  
  05.45.-a (Nonlinear dynamics and chaos)  
  84.40.Az (Waveguides, transmission lines, striplines)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974095 and 10774072).

Cite this article: 

Tao Feng(陶锋), Chen Wei-Zhong(陈伟中), Xu Wen(许文), and Du Si-Dan(都思丹) Energy unidirectional transmission in an asymmetrically finite transmission line 2012 Chin. Phys. B 21 014101

[1] Scalora M, Dowling J P, Bowden C M and Bloemer M J 1994 J. Appl. Phys. 76 2023
[2] Tocci M D, Bloemer M J, Scalora M, Dowling J P and Bowden C M 1995 Appl. Phys. Lett. 66 2324
[3] Molina M I and Kivshar Yu S 2007 Phys. Lett. A 362 280
[4] Suntsov S, Makris K G, Christodoulides D N, Stegeman G I, Morandotti R, Volatier M, Aimez V, ArÉs R, Yang E H and Salamo G 2008 Opt. Exp. 16 10480
[5] Konotop V V and Kuzmiak V 2002 Phys. Rev. B 66 235208
[6] Song M H, Park B, Takanishi Y, Ishikawa K, Nishimura S, Toyooka T and Takezoe H 2006 Thin Solid Films 509 49
[7] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
[8] Li B W and Wang J 2003 Phys. Rev. Lett. 91 044301
[9] Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[10] Li B W, Lan J H and Wang L 2005 Phys. Rev. Lett. 95 104302
[11] Lan J H and Li B W 2006 Phys. Rev. B 74 214305
[12] Lan J H and Li B W 2007 Phys. Rev. B 75 214302
[13] Hu B and Yang L 2005 Chaos 15 015119
[14] Hu B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302
[15] Xie B S, Li H and Hu B 2005 Europhys. Lett. 69 358
[16] Segal D 2008 Phys. Rev. Lett. 100 105901
[17] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[18] Nesterenko V F, Daraio C, Herbold E B and Jin S 2005 Phys. Rev. Lett. 95 158702
[19] Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
[20] Liang B, Guo X S, Tu J, Zhang D and Cheng J C 2010 Nature Mater. 9 989
[21] Tao F, Chen W Z, Xu W, Pan J T and Du S D 2011 Phys. Rev. E 83 056605
[22] Marquié P, Bilbault J M and Remoissenet M 1994 Phys. Rev. E 49 828
[23] Remoissenet M 1999 sl Waves Called Solitons 3rd ed. (Berlin: Springer) pp. 20-45.
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[4] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[7] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[8] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[9] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[10] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[11] A 45-μJ, 10-kHz, burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
Chao Ma(马超), Ke Liu(刘可), Yong Bo(薄勇), Zhi-Min Wang(王志敏), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084206.
[12] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[13] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[14] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[15] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
No Suggested Reading articles found!