Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 094219    DOI: 10.1088/1674-1056/25/9/094219
SPECIAL TOPIC—Physical research in liquid crystal Prev   Next  

Determining the imaging plane of a retinal capillary layer in adaptive optical imaging

Le-Bao Yang(杨乐宝)1,2, Li-Fa Hu(胡立发)1, Da-Yu Li(李大禹)1, Zhao-Liang Cao(曹召良)1, Quan-Quan Mu(穆全全)1, Ji Ma(马骥)1,3, Li Xuan(宣丽)1
1. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Liquid Crystal Institute, Kent State University, Kent 44242, USA
Abstract  Even in the early stage, endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μ. However, the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μ in diameter. The human retina is a thin and multiple layer tissue, and the layer of capillaries less than 10 μ in diameter only exists in the inner nuclear layer. The layer thickness of capillaries less than 10 μ in diameter is about 40 μ and the distance range to rod&cone cell surface is tens of micrometers, which varies from person to person. Therefore, determining reasonable capillary layer (CL) position in different human eyes is very difficult. In this paper, we propose a method to determine the position of retinal CL based on the rod&cone cell layer. The public positions of CL are recognized with 15 subjects from 40 to 59 years old, and the imaging planes of CL are calculated by the effective focal length of the human eye. High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system (LCAOS) validate our method. All of the subjects' CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer, which is influenced by the depth of focus.
Keywords:  liquid crystal device      adaptive optics      capillary layer position      retinal imaging  
Received:  19 May 2016      Accepted manuscript online: 
PACS:  42.70.Df (Liquid crystals)  
  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
  42.66.Lc (Vision: light detection, adaptation, and discrimination)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174274, 11174279, 61205021, 11204299, 61475152, and 61405194).
Corresponding Authors:  Li Xuan     E-mail:  xuanli1957@sina.com

Cite this article: 

Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽) Determining the imaging plane of a retinal capillary layer in adaptive optical imaging 2016 Chin. Phys. B 25 094219

[1] Browning D J, Altaweel M M, Bressler N M, Bressler S B and Scott I U 2008 Am. J. Ophthalmol. 146 649
[2] Tam J, Dhamdhere K P, Tiruveedhula P, Manzanera S, Barez S, Bearse M A, Adams A J and Roorda A 2011 Invest. Ophthalmol. Vis. Sci. 52 9257
[3] Deak G G and Schmidt-Erfurth U 2013 Curr. Diabetes. Rep. 13 469
[4] Burns S A, Elsner A E, Chui T Y, VanNasdale D A, Clark C A, Gast T J, Malinovsky V E and Phan A D T 2014 Biomed. Opt. Express 5 961
[5] Zhu P, Huang F, Lin F, Li Q, Yuan Y, Gao Z and Chen F 2014 PLoS One 9 e106551
[6] Wang J J, Liew G, Klein R, Rochtchina E, Knudtson M D, Klein B E, Wong T Y, Burlutsky G and Mitchell P 2007 Eur. Heart J. 28 1984
[7] Bagci A M, Shahidi M, Ansari R, Blair M, Blair N P and Zelkha R 2008 Am. J. Ophthalmol. 146 679
[8] Tan O, Li G, Lu A T H, Varma R and Huang D 2008 Ophthalmology 115 949
[9] Loduca A L, Zhang C, Zelkha R and Shahidi M 2010 Am. J. Ophthal- mol. 150 849
[10] Ling N, Zhang Y, Rao X, Wang C, Hu Y and Jiang W 2005 Chin. Opt. Lett. 3 225
[11] Gray D C, Merigan W, Wolfing J I, Gee B P, Porter J, Dubra A, Twietmeyer T H, Ahamd K, Tumbar R, Reinholz F and Williams D R 2006 Opt. Express 14 7144
[12] Kim D Y, Fingler J, Werner J S, Schwartz D M, Fraser S E and Zawadzki R J 2011 Biomed. Opt. Express 2 1504
[13] Chui T Y P, VanNasdale D A and Burns S A 2012 Biomed. Opt. Express 3 2537
[14] Hammer D X, Ferguson R D, Bigelow C E, Iftimia N V, Ustun T E and Burns S A 2006 Opt. Express 14 3354
[15] Roorda A, Romero-Borja F, Donnelly III W J, Queener H, Hebert T J and Campbell M C W 2002 Opt. Express 10 405
[16] Liu R X, Zheng X L, Li D Y, Xia M L, Hu L F, Cao Z L, Mu Q Q and Xuan L 2014 Chin. Phys. B 23 094211
[17] Zhang Y, Rha J, Jonnal R and Miller D 2005 Opt. Express 13 4792
[18] Liang J, Williams D R and Miller D T 1997 J. Opt. Soc. Am. A 14 2884
[19] Carroll J, Neitz M, Hofer H, Neitz J and Williams D R 2004 Proc. Natl. Acad. Sci. USA 101 8461
[20] Emsley H H 1953 Visual Optics, 5th edn. (London: Hatton Press)
[21] Grand Y L 1980 Physiological Optics (New York: Springer-Verlag)
[22] Hu L, Xuan L, Cao Z, Mu Q, Li D and Liu Y 2006 Opt. Express 14 11911
[23] Zhang Y, Hu L, Peng Z and Xuan L 2014 Chin. J. Liq. Crys. Disp. 29 709 (in Chinese)
[24] Xuan L, Li D and Liu Y 2015 Chin. J. Liq. Crys. Disp. 30 1 (in Chinese)
[25] American National Standards Institute 2007 American National Stan-dard for the Safe Use of Lasers (Orlando: Laser Institute of America)
[26] Lowentha S and Joyeux D 1971 J. Opt. Soc. Am. A 61 847
[27] Atchison D A and Smith G 2005 J. Opt. Soc. Am. A 22 29
[28] Ray S F 1994 Photographic Lenses and Optics (Oxford: Focal Press)
[29] McLean I S 2008 Electronic Imaging in Astronomy: Detectors and Instrumentation (Springer)
[1] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[2] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[3] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[4] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[5] Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics
Li Xuan(宣丽), Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海). Chin. Phys. B, 2016, 25(9): 094216.
[6] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
[7] Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system
Cheng Sheng-Yi (程生毅), Liu Wen-Jin (刘文劲), Chen Shan-Qiu (陈善球), Dong Li-Zhi (董理治), Yang Ping (杨平), Xu Bing (许冰). Chin. Phys. B, 2015, 24(8): 084214.
[8] Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera
Liu Rui-Xue (刘瑞雪), Zheng Xian-Liang (郑贤良), Li Da-Yu (李大禹), Xia Ming-Liang (夏明亮), Hu Li-Fa (胡立发), Cao Zhao-Liang (曹召良), Mu Quan-Quan (穆全全), Xuan Li (宣丽). Chin. Phys. B, 2014, 23(9): 094211.
[9] Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler
Luo Wen (罗文), Geng Chao (耿超), Wu Yun-Yun (武云云), Tan Yi (谭毅), Luo Qi (罗奇), Liu Hong-Mei (刘红梅), Li Xin-Yang (李新阳). Chin. Phys. B, 2014, 23(1): 014207.
[10] Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor
Yu Liang-Hong(於亮红), Liang Xiao-Yan(梁晓燕), Ren Zhi-Jun(任志君), Wang Li(王利), Xu Yi(许毅), Lu Xiao-Ming(陆效明), and Yu Guo-Hao(于国浩) . Chin. Phys. B, 2012, 21(1): 014201.
[11] High precision Zernike modal gray map reconstruction for liquid crystal corrector
Liu Chao(刘超), Mu Quan-Quan(穆全全), Hu Li-Fa(胡立发), Cao Zhao-Liang(曹召良), and Xuan Li(宣丽). Chin. Phys. B, 2010, 19(6): 064214.
[12] Thermal stability test and analysis of a 20-actuator bimorph deformable mirror
Ning Yu(宁禹), Zhou Hong(周虹), Yu Hao(余浩), Rao Chang-Hui(饶长辉), and Jiang Wen-Han(姜文汉). Chin. Phys. B, 2009, 18(3): 1089-1095.
[13] Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device
Hu Li-Fa (姜宝光), Xuan Li (曹召良), Jiang Bao-Guang (穆全全), Cao Zhao-Liang (胡立发), Mu Quan-Quan (李超), Li Chao (宣丽). Chin. Phys. B, 2008, 17(12): 4529-4532.
No Suggested Reading articles found!