Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 064214    DOI: 10.1088/1674-1056/19/6/064214
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

High precision Zernike modal gray map reconstruction for liquid crystal corrector

Liu Chao(刘超)a)b)†, Mu Quan-Quan(穆全全) a)b), Hu Li-Fa(胡立发)a), Cao Zhao-Liang(曹召良)a), and Xuan Li(宣丽) a)
a State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  This paper proposes a new Zernike modal gray map reconstruction algorithm used in the nematic liquid crystal adaptive optics system. Firstly, the new modal algorithm is described. Secondly, a single loop correction experiment was conducted, and it showed that the modal method has a higher precision in gray map reconstruction than the widely used slope method. Finally, the contrast close-loop correction experiment was conducted to correct static aberration in the laboratory. The experimental results showed that the average peak to valley (PV) and root mean square (RMS) of the wavefront corrected by mode method were reduced from 2.501$\lambda$  ($\lambda =633~nm$) and 0.610$\lambda$  to 0.0334$\lambda$  and 0.00845$\lambda$, respectively. The corrected PV and RMS were much smaller than those of 0.173$\lambda$  and 0.048$\lambda$  by slope method. The Strehl ratio and modulation transfer function of the system corrected by mode method were much closer to diffraction limit than with slope method. These results indicate that the mode method can take good advantage of the large number of pixels of the liquid crystal corrector to realize high correction precision.
Keywords:  liquid crystal device      adaptive optics      modal gray map reconstruction  
Received:  21 October 2009      Accepted manuscript online: 
PACS:  42.79.Kr (Display devices, liquid-crystal devices)  
  42.30.Wb (Image reconstruction; tomography)  
  42.30.Lr (Modulation and optical transfer functions)  
  42.15.Fr (Aberrations)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos.~60736042, 60578035 and 50703039) and Science and Technology Cooperation Project between Chinese Academy of Sciences and Jilin Province (Grant No.~2008SYHZ0005).

Cite this article: 

Liu Chao(刘超), Mu Quan-Quan(穆全全), Hu Li-Fa(胡立发), Cao Zhao-Liang(曹召良), and Xuan Li(宣丽) High precision Zernike modal gray map reconstruction for liquid crystal corrector 2010 Chin. Phys. B 19 064214

[1] Ellerbroek B 1994 J. Opt. Soc. Am. A 11 783
[2] Max C, Olivier S, Friedman H, An J, Avicola K, Beeman B, Bissinger H, Brase J, Erbert G and Gavel D 1997 Science 277 1649
[3] Van D M, Le M D and Macintosh B 2004 Appl. Opt. 43 5458
[4] Jiang B G, Cao Z L, Mu Q Q, Li C and Xia M L 2004 Optics and Precision Engineering 16 1805 (in Chinese)
[5] Chen D, Jones S, Silva D and Olivier S 2007 J. Opt. Soc. Am. A 24 1305
[6] Jiang B G, Cao Z L, Mu Q Q, Hu L F, Li C and Xuan L 2008 Chin. Phys. B 17 4529
[7] Porter J, Queener H M, Lin J E, Thorn K and Awwal A 2006 Adaptive Optics for Vision Science (New York: John Wiley & Sons) p.~122
[8] Hu L H, Xuan L, Liu Y G, Cao Z L, Li D Y and Mu Q Q 2004 Opt. Express 12 6403
[9] Mu Q Q, Cao Z L, Hu L F, Li D Y and Xuan L 2006 Opt. Express 14 8013
[10] Love G D 1997 Appl. Opt. 36 1517
[11] Cao Z L, Mu Q Q, Hu L F. Li D Y, Peng Z H, Liu Y G and Xuan L 2009 Opt. Express 17 2530
[12] Mu Q Q, Cao Z L, Li C, Jiang B G, Hu L F and Xuan L 2008 Opt. Lett. 33 2898
[13] Li C, Xia M L, Jiang B G, Mu Q Q, Cheng S Y and Xuan L 2009 Opt. Commun. 282 1496
[14] Mu Q Q, Cao Z L, Li D Y, Hu L F and Xuan L 2008 Appl. Opt. 47 4297
[15] Thibos L, Applegate R, Schwiegerling J and Webb R 2000 Vision Science and Its Applications 35 232
[1] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[2] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[3] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[4] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
[5] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[6] Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics
Li Xuan(宣丽), Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海). Chin. Phys. B, 2016, 25(9): 094216.
[7] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[8] Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system
Cheng Sheng-Yi (程生毅), Liu Wen-Jin (刘文劲), Chen Shan-Qiu (陈善球), Dong Li-Zhi (董理治), Yang Ping (杨平), Xu Bing (许冰). Chin. Phys. B, 2015, 24(8): 084214.
[9] Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera
Liu Rui-Xue (刘瑞雪), Zheng Xian-Liang (郑贤良), Li Da-Yu (李大禹), Xia Ming-Liang (夏明亮), Hu Li-Fa (胡立发), Cao Zhao-Liang (曹召良), Mu Quan-Quan (穆全全), Xuan Li (宣丽). Chin. Phys. B, 2014, 23(9): 094211.
[10] Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler
Luo Wen (罗文), Geng Chao (耿超), Wu Yun-Yun (武云云), Tan Yi (谭毅), Luo Qi (罗奇), Liu Hong-Mei (刘红梅), Li Xin-Yang (李新阳). Chin. Phys. B, 2014, 23(1): 014207.
[11] Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor
Yu Liang-Hong(於亮红), Liang Xiao-Yan(梁晓燕), Ren Zhi-Jun(任志君), Wang Li(王利), Xu Yi(许毅), Lu Xiao-Ming(陆效明), and Yu Guo-Hao(于国浩) . Chin. Phys. B, 2012, 21(1): 014201.
[12] Thermal stability test and analysis of a 20-actuator bimorph deformable mirror
Ning Yu(宁禹), Zhou Hong(周虹), Yu Hao(余浩), Rao Chang-Hui(饶长辉), and Jiang Wen-Han(姜文汉). Chin. Phys. B, 2009, 18(3): 1089-1095.
[13] Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device
Hu Li-Fa (姜宝光), Xuan Li (曹召良), Jiang Bao-Guang (穆全全), Cao Zhao-Liang (胡立发), Mu Quan-Quan (李超), Li Chao (宣丽). Chin. Phys. B, 2008, 17(12): 4529-4532.
No Suggested Reading articles found!