Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097305    DOI: 10.1088/1674-1056/20/9/097305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dispersion effect on the current voltage characteristic of AlGaN/GaN high electron mobility transistors

Pu Yan(蒲颜), Pang Lei(庞磊), Chen Xiao-Juan(陈晓娟), Yuan Ting-Ting(袁婷婷), Luo Wei-Jun(罗卫军), and Liu Xin-Yu(刘新宇)
Key Laboratory of Microelectronics Device & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  The current voltage (IV) characteristics are greatly influenced by the dispersion effects in AlGaN/GaN high electron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to give a deep investigation into the dispersion effects, which are mainly related to the trap and self-heating mechanisms. The results show that traps play an important role in the kink effects, and high stress can introduce more traps and defects in the device. With the help of the pulsed IV measurements, the trapping effects and self-heating effects can be separated. The impact of time constants on the dispersion effects is also discussed. In order to achieve an accurate static DC IV measurement, the steady state of the bias points must be considered carefully to avoid the dispersion effects.
Keywords:  dispersion effects      pulsed current voltage measurement      trap      self-heating  
Received:  15 February 2010      Revised:  30 May 2011      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  

Cite this article: 

Pu Yan(蒲颜), Pang Lei(庞磊), Chen Xiao-Juan(陈晓娟), Yuan Ting-Ting(袁婷婷), Luo Wei-Jun(罗卫军), and Liu Xin-Yu(刘新宇) Dispersion effect on the current voltage characteristic of AlGaN/GaN high electron mobility transistors 2011 Chin. Phys. B 20 097305

[1] Chow T P and Tyagi R 1994 IEEE Trans. Electron Devices 41 1481
[2] Yoder M N 1996 IEEE Trans. Electron Devices 43 1633
[3] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 IEEE Electron Device Lett. 31 195
[4] Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Lett. 92 263502
[5] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653
[6] Peng D S, Feng Y C, Wang W X, Liu X F, Shi W and Niu H B 2006 Acta Phys. Sin. 55 3606 (in Chinese)
[7] Edwards C F, Redman-White W, Tenbroek B M, Lee M S L and Uren M J 1997 IEEE Trans. Electron Devices 44 2290
[8] Ernst A N, Somerville M H and Del Alamo J A 1997 IEEE Electron Device Lett. 18 613
[9] Mazzanti A, Verzellesi G, Canali C, Meneghesso G and Zanoni E 2002 IEEE Electron Device Lett. 23 383
[10] Meneghesso G, Zanon F, Uren M J and Zanoni E 2009 IEEE Electron Device Lett. 30 100
[11] Wu Y F, Keller B P, Keller S, Xu J J, Thibeault B J, Denbaars S P and Mishra U K 1999 IEICE Trans. Electron. E82-C 1895
[12] Wang L, Hu W D, Chen X S and Lu W 2010 Acta Phys. Sin. 59 5730 (in Chinese)
[13] Vetury R, Zhang N Q, Keller S and Mishra U K 2001 IEEE Trans. Electron Devices 48 560
[14] Binari S C, Ikossi K, Roussos J A, Kruppa W, Paker D, Dietrich H B, Koleske D D, Wickenden A E and Henry R L 2001 IEEE Trans. Electron Devices 48 465
[15] Blight S R, Wallis R H and Thomas H 1986 IEEE Trans. Electron Devices 33 1447
[16] Chikhaoui W, Bluet J M, Bru-Chevallier C, Dua C and Aubry R 2010 Phys. Status Solidi C 7 92
[17] Gaska R, Osinsky A, Yang J W and Shur M S 1998 IEEE Electron Device Lett. 19 89
[18] Kuball M, Hayes J M, Uren M J, Martin T, Birbeck J C H, Balmer R S and Hughes B T 2002 IEEE Electron Device Lett. 23 7
[19] Zhang G C, Feng S W, Zhou Z, Li J W and Guo C S 2011 Chin. Phys. B 20 027202
[20] Parker A E and Rathmell J G 2003 IEEE Trans. Microwave Theory Tech. 51 588
[21] Golio J M, Miller M G, Maracas G N and Johnson D A 1990 IEEE Trans. Electron Devices 37 1217
[22] Barton T M and Ladbrooke P H 1986 Solid-State Electron. 29 807
[23] Ho W Y, Surya C, Tong K Y, Lu L W and Ge W K 2000 IEEE Trans. Electron Devices 47 1421
[24] Lee J W and Webb K J 2004 IEEE Trans. Microwave Theory Tech. 52 2
[25] Ren F, Hao Z B, Wang L, Wang L, Li H T and Luo Y 2010 Chin. Phys. B 19 017306
[26] Scott J, Rathmell J G, Parker A and Sayed M 1996 IEEE Trans. Microwave Theory Tech. 44 2718
[27] Ibbetson J P, Fini P T, Ness K D, Denbaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250
[28] Binari S C, Klein P B and Kazior T E 2002 Proc. IEEE 90 1048
[29] Meneghesso G, Paccagnella A, Haddab Y, Canali C and Zanoni E 1996 Appl. Phys. Lett. 69 1411
[30] Dang X Z, Asbeck P M, Yu E T, Boutros K S and Redwing J M 2000 Proc. Mater. Res. Soc. Symp. 622 T6.28.1
[31] Akhtar S, Roblin P, Lee S, Ding X H, Yu S, Kasick J and Strahler J 2002 IEEE Trans. Microwave Theory Tech. 50 1561
[32] Sofia J W 1995 IEEE Trans. Compon. Packag. Manuf. Technol. (Part A:) 18 39
[33] Baylis C P II, Dunleavy L P and Daniel J E 2004 IEEE MTT-S International Microwave Symposium Digest 2 1233
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[8] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[9] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[10] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[11] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
[14] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[15] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
No Suggested Reading articles found!