Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097105    DOI: 10.1088/1674-1056/20/9/097105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains

Liu Dan-Dan(刘丹丹) and Zhang Hong(张红)
College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
Abstract  We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time-dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on.
Keywords:  plasmon resonance      time-dependent density functional theory      longitudinal plasmon mode      transverse plasmon mode  
Received:  01 April 2011      Revised:  27 April 2011      Accepted manuscript online: 
PACS:  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  72.15.Nj (Collective modes (e.g., in one-dimensional conductors))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  

Cite this article: 

Liu Dan-Dan(刘丹丹) and Zhang Hong(张红) A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains 2011 Chin. Phys. B 20 097105

[1] Nie S and Emory S R 1997 Science 275 1102
[2] Xu H, Bjerneld E J, Käll M and Börjesson L 1999 Phys. Rev. Lett. 83 4357
[3] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[4] Sönnichsen C, Franzl T, Wilk T, von Plesson G, Feldmann J, Wilson O and Mulvaney P 2002 Phys. Rev. Lett. 88 077402
[5] Li K, Stockman M L and Bergman D J 2003 Phys. Rev. Lett. 91 227402
[6] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[7] Hervieux P A and Bigot J Y 2004 Phys. Rev. Lett. 92 197402
[8] Coe J V, Heer J M, Teeters Kennedy S, Tian H and Rodriguez K R 2008 Annu. Rev. Phys. Chem. 59 179
[9] Schwartzberg A M and Zhang J Z 2008 J. Phys. Chem. C 112 10323
[10] Kneipp J, Kneipp H and Kneipp K 2008 Chem. Soc. Rev. 37 1052
[11] Bell A T 2003 Science 299 1688
[12] Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J and West J L 2003 Proc. Natl. Acad. Sci. USA 100 13549
[13] Chen J, Wang D, Xi J, Au L, Sieckkinen A, Warsen A, Li Z Y, Zhang H, Xia Y and Li X 2007 it Nano Lett. 7 1318
[14] Nehl C L, Liao H and Hafner J H 2006 Nano Lett. 6 683
[15] Shumaker Parry J S, Rochholz H and Kreiter M 2005 Adv. Mater. 17 2131
[16] Wiley B J, Chen Y, Mclellan J M, Xiong Y, Li Z Y, Ginger D and Xia Y 2007 Nano Lett. 7 1032
[17] Sung J, Hicks E M, van Duyne R P and Spears K G 2007 J. Phys. Chem. C 111 10368
[18] Langhammer C, Schwind M, Kasemo B and Zori'c I 2008 Nano Lett. 8 146
[19] Aizpurua J, Hanarp P, Sutherland D S, Käll M, Bryant G W and de Abajo F J G 2003 Phys. Rev. Lett. 90 057401
[20] Chan G H, Zhao J, Hicks E M, Schatz G C and van Duyne R P 2007 Nano Lett. 7 1947
[21] Chao C, Wu D J and Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese)
[22] Hong X, Du D D, Qiu Z R and Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese)
[23] Wallis T M, Nilius N and Ho W 2002 Phys. Rev. Lett. 89 236802
[24] Wei Q H, Su K H, Durant S and Zhang X 2004 Nano Lett. 4 1067
[25] Duan J L, Cornelius T W, Liu J, Karim S, Yao H J, Picht O, Rauber M, Müller S and Neumann R 2009 J. Phys. Chem. C 113 13583
[26] Yan J, Yuan Z and Gao S W 2007 Phys. Rev. Lett. 98 216602
[27] Yan J and Gao S W 2008 Phys. Rev. B 78 235413
[28] Harris N, Arnold M D, Blaber M G and Ford M J 2009 J. Phys. Chem. C 113 2784
[29] Hanarp P, Käll M and Sutherland D S 2003 J. Phys. Chem. B 107 5768
[30] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
[31] Nilius N, Wallis T M and Ho W 2002 Science 297 1853
[32] Castro A, Marques M A L, Alonso J A, Bertsch G F, Yabana K and Rubio A 2002 J. Chem. Phys. 116 1930
[33] Andrade X, Botti S, Marques M and Rubio A 2007 J. Chem. Phys. 126 184106
[34] Cui L, Zhao J, Hu Y J, Teng Y Y, Zeng X H and Gu B 2006 Appl. Phys. Lett. 89 211103
[35] Brabec T and krausz F 2000 Rev. Mod. Phys. 72 545
[36] Castro A, Räsänen E, Rubio A and Gross E K U 2009 Europhys. Lett. 87 53001
[37] Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
[38] Castro A, Marques M A L and Rubio A 2004 J. Chem. Phys. 121 3425
[39] Casida M E 1995 in Recent Advances in Density Functional Methods (Part I) ed. D.P. Chong (Singapore: World Scientific), p. 155
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[8] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[9] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[10] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[11] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[12] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[13] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[14] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[15] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
No Suggested Reading articles found!