|
|
A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control |
Wang Jun-Wei(王军威)†, Ma Qing-Hua(马庆华), and Zeng Li(曾丽) |
Cisco School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006, China |
|
|
Abstract Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.
|
Received: 08 February 2011
Revised: 23 April 2011
Accepted manuscript online:
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Fund: Project supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province of China
(Grant No. LYM10074) and the Natural Science Foundation of Guangdong Province, China (Grant No. 9451042001004076). |
Cite this article:
Wang Jun-Wei(王军威), Ma Qing-Hua(马庆华), and Zeng Li(曾丽) A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control 2011 Chin. Phys. B 20 080506
|
[1] |
Chua L O, Komuro M and Matsumoto T 1986 IEEE Trans. Circuits Syst. CAS-33 1073
|
[2] |
Matsumoto T 1984 IEEE Trans. Circuits Syst. CAS-31 1055
|
[3] |
Zhong G Q and Ayrom F 1985 Int. J. Circuit Theor. Appl. 13 93
|
[4] |
Matsumoto T, Chua L O and Komuro M 1985 IEEE Trans. Circuits Syst. CAS-32 797
|
[5] |
Shil'nikov L P 1994 Int. J. Bifur. Chaos 4 489
|
[6] |
Chua L O, Itoh M, Kocarev L and Eckert K 1993 J. Circuits Syst. Comput. 3 93
|
[7] |
Zhang H B, Xia J W, Yu Y B and Dang C Y 2010 Chin. Phys. B 19 030505
|
[8] |
Fu S H and Pei L J 2010 Acta Phys. Sin. 59 5985 (in Chinese)
|
[9] |
Kocarev L M and Janji'c P A 1995 IEEE Trans. Circuits Syst. I: Fund. Theor. Appl. 42 779
|
[10] |
Miller D A, Kowalski K L and Lozowski A 1999 Proc. IEEE ISCAS '99 5 458
|
[11] |
Li C D and Liao X F 2006 Int. J. Bifur. Chaos 16 1041
|
[12] |
Liao X X, Chen G, Xu B J and Shen Y 2005 Int. J. Bifur. Chaos 15 2227
|
[13] |
Zhang J, Xu H B and Wang H J 2006 Chin. Phys. 15 953
|
[14] |
Li J F, Li N, Cai L and Zhang B 2008 Acta Phys. Sin. 57 7500 (in Chinese)
|
[15] |
Feng Y F and Zhang Q L 2010 Chin. Phys. B 19 120504
|
[16] |
Wang S H, Liu W Q, Ma B J, Xiao J H and Jiang D Y 2005 Chin. Phys. 14 55
|
[17] |
Xu S Y, Yang Y, Liu X, Tang Y and Sun H D 2011 Chin. Phys. B 20 020509
|
[18] |
Hung Y C, Yan J J and Liao T L 2008 Math. Comput. Simul. 77 374
|
[19] |
Meng J and Wang X Y 2009 Acta Phys. Sin. 58 819 (in Chinese)
|
[20] |
Buscarino A, Fortuna L, Frasca M and Sciuto G 2009 Int. J. Bifur. Chaos 19 3101
|
[21] |
Porfiri M and Fiorilli F 2010 Physica D 239 454
|
[22] |
Grosu I, Banerjee R, Roy P K and Dana S K 2009 Phys. Rev. E 80 016212
|
[23] |
Jadbabaie A, Abdallah C T, Famularo D and Dorato P 1998 Proc. American Control Conference June 21—26, 1998, Philadelphia, USA, pp. 2842—2846
|
[24] |
Keel L H and Bhattacharyya S P 1997 IEEE Trans. Automat. Control 42 1098
|
[25] |
Haddad W M and Corrado J 1997 Proc. 35th IEEE Conf. Decis. Control December 10—12, 1997, San Diego, USA, pp. 2678—2683
|
[26] |
Dorato P 1998 Proc. American Control Conference June 21—26, 1998, Philadelphia, USA, pp. 2829—2831
|
[27] |
Yang G H and Wang J L 2001 Automatica 37 727
|
[28] |
Park J H 2004 Appl. Math. Comput. 149 147
|
[29] |
Zhang B Y, Zhou S S and Li T 2007 Informat. Sci. 177 5118
|
[30] |
Yang G H and Che W W 2008 Automatica 44 2849
|
[31] |
Wo S L, Zou Y, Chen Q W and Xu S Y 2009 J. Franklin Inst. 346 914
|
[32] |
Boyd S, EI Ghaoui L, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
|
[33] |
Zhong G Q 1994 IEEE Trans. Circuits Syst. I: Fund. Theor. Appl. 41 934
|
[34] |
Huang A, Pivka L, Wu C W and Franz M 1996 Int. J. Bifur. Chaos 6 2175
|
[35] |
Tang K S, Man K F, Zhong G Q and Chen G 2003 Contr. Theor. Appl. 20 223
|
[36] |
Stegemann C, Albuquerque H A and Rech P C 2010 Chaos 20 023103
|
[37] |
Thamilmaran K, Lakshmanan M and Venkatesan A 2004 Int. J. Bifur. Chaos 14 221
|
[38] |
Liu X, Wang J Z and Huang L 2007 Int. J. Bifur. Chaos 17 2705
|
[39] |
Chua L O and Lin G N 1990 IEEE Trans. Circuits Syst. CAS-37 885
|
[40] |
Chua L O, Wu C W, Huang A and Zhong G Q 1993 IEEE Trans. Circuits Syst. I: Fund. Theor. Appl. CAS-40 732
|
[41] |
Wang X F and Chen G 2003 IEEE Circuits Syst. Mag. 3 6
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|