Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120508    DOI: 10.1088/1674-1056/21/12/120508
GENERAL Prev   Next  

Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions

Dai Hao (戴浩), Jia Li-Xin (贾立新), Zhang Yan-Bin (张彦斌)
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria is derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.
Keywords:  complex networks      generalized matrix projective lag synchronization      adaptive control      Lyapunov stability theory  
Received:  31 March 2012      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  89.75.Hc (Networks and genealogical trees)  
Corresponding Authors:  Jia Li-Xin     E-mail:  gongqi112@163.com

Cite this article: 

Dai Hao (戴浩), Jia Li-Xin (贾立新), Zhang Yan-Bin (张彦斌) Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions 2012 Chin. Phys. B 21 120508

[1] Watts D J and Strogatz S H 1998 Nature 391 440
[2] Barabasi A L and Albert R 1999 Science 286 509
[3] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[4] Wang X F and Chen G R 2002 Int. J. Bifur. Chaos 12 187.
[5] Wang X F and Chen G R 2002 IEEE Trans. Circ. Syst. I 49 54
[6] Wu X J and Lu H T 2010 Phys. Lett. A 374 3932
[7] Wu X J and Lu H T 2010 Chin. Phys. B 19 070511
[8] Wang M J, Wang X Y and Niu Y J 2011 Chin. Phys. B 20 010508
[9] Tang Y, Wong W K, Fang J A and Miao Q Y 2011 Chin. Phys. B 20 040513
[10] Zheng S, Bi Q S and Cai G L 2009 Phys. Lett. A 373 1553
[11] Tang H W, Chen L, Lu J A and Tse C K 2008 Phys. Lett. A 387 5623
[12] Chen B R, Jiao L C, Wu J S and Wang X H 2009 Chin. Phys. Lett. 26 060505
[13] Zhou J, Lu J A and Lü J H 2008 Automatica 44 996
[14] Yu W W, Chen G R and Lü J H 2009 Automatica 45 429
[15] Wen S, Chen S H and Guo W L 2008 Phys. Lett. A 372 6340
[16] Regalia P A and Sanjit M K 1989 SIAM Rev. 31 586
[17] Wu X J and Lu H T 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3005
[18] Dai H, Jia L X, Hui M and Si G Q 2011 Chin. Phys. B 20 040507
[19] Jia L X, Dai H and Hui M 2010 Chin. Phys. B 19 100501
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[5] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[6] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[7] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[8] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[9] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[10] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[11] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[12] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[13] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[14] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[15] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
No Suggested Reading articles found!