Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080502    DOI: 10.1088/1674-1056/27/8/080502
GENERAL Prev   Next  

Double compound combination synchronization among eight n-dimensional chaotic systems

Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly
Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt
Abstract  Depending on double compound synchronization and compound combination synchronization, a new kind of synchronization is introduced which is the double compound combination synchronization (DCCS) of eight n-dimensional chaotic systems. This kind may be considered as a generalization of many types of synchronization. In the communication, based on many of drive and response systems, the transmitted and received signals will be more secure. Using the Lyapunov stability theory and nonlinear feedback control, analytical formulas of control functions are obtained to insure our results. The corresponding analytical expression and numerical treatment are used to show the validity and feasibility of our proposed synchronization scheme. The eight memristor-based Chua oscillators are considered as an example. Other examples can be similarly investigated. The proposed synchronization technique is supported using the MATLAB simulation outcomes. We obtain the same results of numerical treatment of our synchronization using simulation observations of our example.
Keywords:  double compound synchronization      compound combination synchronization      chaotic system      Lyapunov stability  
Received:  21 March 2018      Revised:  16 May 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Gamal M Mahmoud     E-mail:  gmahmoud@aun.edu.eg

Cite this article: 

Gamal M Mahmoud, Tarek M Abed-Elhameed, Ahmed A Farghaly Double compound combination synchronization among eight n-dimensional chaotic systems 2018 Chin. Phys. B 27 080502

[1] Liu H, Li S G, Sun Y G and Wang H X 2015 Chin. Phys. B 24 090505
[2] Xu Y, Wang H, Li Y and Pei B 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3735
[3] Liao H, Shen J, Wu X, Chen B and Zhou M 2017 Chin. Phys. B 26 110505
[4] Hu X, Liu C, Liu L, Yao Y and Zheng G 2017 Chin. Phys. B 26 110502
[5] Zhang L, Sun K, Liu W and He S 2017 Chin. Phys. B 26 100504
[6] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[7] Mahmoud G M, Mahmoud E E, Farghaly A A and Aly S A 2009 Chaos, Solitons and Fractals 42 2858
[8] Zhang G, Wu F, Wang C and Ma J 2017 Int. J. Mod. Phys. B 31 1750180
[9] Aziz M M and AL-Azzawi S F 2017 Optik 134 109
[10] Mahmoud G M and Mahmoud E E 2010 Math. Comput. Simul. 80 2286
[11] Liu B, Li J and Zheng W 2013 Asian J. Cont. 15 919
[12] Wang J A, Ma X, Wen X and Sun Q 2016 Physica A 461 278
[13] Mahmoud G M and Mahmoud E E 2011 Int. J. Bifur. Chaos 21 2369
[14] Zhang H and Wang X 2017 Journal of the Franklin Institute 354 5011
[15] Shi L, Zhu H, Zhong S and Cheng J 2016 ISA Transactions 65 81
[16] Xu Y, Wang H, Liu D and Huang H 2015 J. Vib. Cont. 21 435
[17] Xu Y, Mahmoud G M, Xu W and Lei Y 2005 Chaos, Solitons and Fractals 23 265
[18] Xu Y, Xu W and Mahmoud G M 2005 Int. J. Mod. Phys. C 16 1437
[19] Xu Y, Gu R and Zhang H 2011 Chaos, Solitons and Fractals 44 490
[20] Mahmoud G M, Mahmoud E E and Arafa A A 2013 Chin. Phys. B 22 060508
[21] Xu Y, Gu R, Zhang H and Li D 2012 Int. J. Bifur. Chaos 22 1250088
[22] Mahmoud G M 1997 Int. J. Non-linear Mech. 32 1177
[23] Mahmoud G M and Aly S A 2000 Int. J. Nonlinear Mech. 35 309
[24] Mahmoud G M, Mahmoud E E and Ahmed M E 2007 Int. J. Appl. Math. Stat. 12 90
[25] Runzi L, Yinglan W and Shucheng D 2011 Chaos 21 043114
[26] Mahmoud G M, Ahmed M E and Abed-Elhameed T M 2017 Optik 130 398
[27] Sun J, Shen Y, Zhang G, Xu C and Cui G 2013 Nonlinear Dyn. 73 1211
[28] Mahmoud G M, Abed-Elhameed T M and Ahmed M E 2016 Nonlinear Dyn. 83 1885
[29] Mahmoud G M, Ahmed M E and Abed-Elhameed T M 2016 Eur. Phys. J. Plus 131 200
[30] Sun J, Shen Y, Yin Q and Xu C 2013 Chaos 23 013140
[31] Zhang B and Deng F 2014 Nonlinear Dyn. 77 1519
[32] Sun J, Wang Y, Wang Y, Cui G and Shen Y 2016 Optik 127 4136
[33] Itoh M and Chua L O 2008 Int. J. Bifur. Chaos 18 3183
[34] Wen S, Zeng Z, Huang T and Chen Y 2013 Phys. Lett. A 377 2016
[35] Chua L 1971 IEEE Trans. Circuit Theory 81 507
[36] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[37] Ventra M D, Pershin Y V and Chua L O 2009 Proc. IEEE 97 1717
[38] Shin S, Kim K and Kang S M 2011 IEEE Trans. Nanotechnology 10 266
[39] He S, Sun K and Wang H 2016 Eur. Phys. J. Special Topics 225 97
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[11] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[12] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[13] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[14] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[15] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
No Suggested Reading articles found!