Abstract We investigate the band structure of a compressively strained In(Ga)As/In0.53Ga0.47As quantum well (QW) on an InP substrate using the eight-band k·p theory. Aiming at the emission wavelength around 2.33 μm, we discuss the influences of temperature, strain and well width on the band structure and on the emission wavelength of the QW. The wavelength increases with the increase of temperature, strain and well width. Furthermore, we design an InAs /In0.53Ga0.47As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.
Wang Ming(汪明), Gu Yong-Xian(谷永先), Ji Hai-Ming(季海铭), Yang Tao(杨涛), and Wang Zhan-Guo(王占国) Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model 2011 Chin. Phys. B 20 077301
[1]
Choi H K 2004 Long-Wavelength Infrared Semiconductor Lasers (Hoboken: Wiley)
[2]
Turner G W, Choi H K and Manfra M J 1998 Appl. Phys. Lett. 72 876
[3]
Hummer M, Rubner K, Benkert A and Forchel A 2004 IEEE Photon. Technol. Lett. 16 380
[4]
Gu Y, Wang K, Li Y Y, Li C and Zhang Y G 2010 Chin. Phys. B 19 077304
[5]
Sato T, Mitsuhara K, Watanabe T, Kasaya K, Takeshita T and Kondo Y 2007 IEEE J. Sel. Topics Quantum Electron. 13 1079
[6]
Sato T, Mitsuhara M, Kakitsuka T and Fujisawa T 2008 IEEE J. Sel. Topics Quantum Electron. 14 992
[7]
Sato T, Mitsuhara M and Kondo Y 2008 The 2008 IEEE 20th Conference on Indium Phosphide and Related Materials Versailles, France May 7—25, 2008 p. 1
[8]
Tourni'e E, Grunberg P, Fouillant C, Baranov A, Joulli'e A and Ploog K H 1994 Solid State Electron. 37 1311
[9]
Mitsuhara M and Kondo Y 2007 Electron. Lett. 43 1143
[10]
Sato T, Mitsuhara M, Nunoya N, Kasaya K, Kano F, Takeshita T and Kondo Y 2007 Proc. 20th Annual Meeting of IEEE Lasers and Electro-Optics Society Piscataway, USA, October 21—25, 2007 p. 697
[11]
Fujisawa T, Sato T, Mitsuhara M, Kakitsuka T, Yamanaka T, Kondo Y and Kano Y 2009 IEEE J. Quantum Electron. 45 1183
[12]
Lassen B, Lew Yan Voon L C, Willatzen M and Melnik R 2004 Solid State Commun 132 141
[13]
Veprek R G, Steiger S and Witzigmann B 2008 J. Comput. Electron. 7 521
[14]
Gu Y X, Yang T, Ji H M, Xu P F and Wang Z G 2010 Chin. Phys. B 19 088102
[15]
Schliwa A 2007 Electronic Properties of Self-organized Quantum Dots Ph.D. Thesis (Berlin: The Technical University of Berlin)
[16]
Stier O 2000 Electronic and Optical Properties of Quantum Dots and Wires (Berlin: Wissenschaft and Technik Verlag)
[17]
Foreman B A 1997 Phys. Rev. B 56 R12748
[18]
Burt M G 1992 J. Phys.: Condens. Matter 4 6651
[19]
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[20]
Chuang S L 1991 Phys. Rev. B 43 9658
[21]
Ke S H, Wang R Z and Huang M C 1993 Acta Phys. Sin. 42 1510 (in Chinese)
[22]
Veprek R G, Steiger S and Witzigmann B 2007 Phys. Rev. B 76 165320
[23]
Tompsett M F 1972 J. Vac. Sci. Technol. 9 166
[24]
Fang Z M , Ma K Y, Jaw D H, Cohen R M and Stringfellow G B 1990 J. Appl. Phys. 67 7034
[25]
Sato T, Kondo Y, Sekiguchi T and Suemasu T 2008 Appl. Phys. Expr. 1 111202
[26]
Matthews J E and Blakeslee A E 1974 J. Cryst. Growth 27 118
Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5 Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
Epitaxial fabrication of monolayer copper arsenide on Cu(111) Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.