CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model |
Wang Ming(汪明), Gu Yong-Xian(谷永先), Ji Hai-Ming(季海铭), Yang Tao(杨涛)†, and Wang Zhan-Guo(王占国) |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract We investigate the band structure of a compressively strained In(Ga)As/In0.53Ga0.47As quantum well (QW) on an InP substrate using the eight-band k·p theory. Aiming at the emission wavelength around 2.33 μm, we discuss the influences of temperature, strain and well width on the band structure and on the emission wavelength of the QW. The wavelength increases with the increase of temperature, strain and well width. Furthermore, we design an InAs /In0.53Ga0.47As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.
|
Received: 15 December 2010
Revised: 01 February 2011
Accepted manuscript online:
|
PACS:
|
73.21.Fg
|
(Quantum wells)
|
|
78.67.De
|
(Quantum wells)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Cite this article:
Wang Ming(汪明), Gu Yong-Xian(谷永先), Ji Hai-Ming(季海铭), Yang Tao(杨涛), and Wang Zhan-Guo(王占国) Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model 2011 Chin. Phys. B 20 077301
|
[1] |
Choi H K 2004 Long-Wavelength Infrared Semiconductor Lasers (Hoboken: Wiley)
|
[2] |
Turner G W, Choi H K and Manfra M J 1998 Appl. Phys. Lett. 72 876
|
[3] |
Hummer M, Rubner K, Benkert A and Forchel A 2004 IEEE Photon. Technol. Lett. 16 380
|
[4] |
Gu Y, Wang K, Li Y Y, Li C and Zhang Y G 2010 Chin. Phys. B 19 077304
|
[5] |
Sato T, Mitsuhara K, Watanabe T, Kasaya K, Takeshita T and Kondo Y 2007 IEEE J. Sel. Topics Quantum Electron. 13 1079
|
[6] |
Sato T, Mitsuhara M, Kakitsuka T and Fujisawa T 2008 IEEE J. Sel. Topics Quantum Electron. 14 992
|
[7] |
Sato T, Mitsuhara M and Kondo Y 2008 The 2008 IEEE 20th Conference on Indium Phosphide and Related Materials Versailles, France May 7—25, 2008 p. 1
|
[8] |
Tourni'e E, Grunberg P, Fouillant C, Baranov A, Joulli'e A and Ploog K H 1994 Solid State Electron. 37 1311
|
[9] |
Mitsuhara M and Kondo Y 2007 Electron. Lett. 43 1143
|
[10] |
Sato T, Mitsuhara M, Nunoya N, Kasaya K, Kano F, Takeshita T and Kondo Y 2007 Proc. 20th Annual Meeting of IEEE Lasers and Electro-Optics Society Piscataway, USA, October 21—25, 2007 p. 697
|
[11] |
Fujisawa T, Sato T, Mitsuhara M, Kakitsuka T, Yamanaka T, Kondo Y and Kano Y 2009 IEEE J. Quantum Electron. 45 1183
|
[12] |
Lassen B, Lew Yan Voon L C, Willatzen M and Melnik R 2004 Solid State Commun 132 141
|
[13] |
Veprek R G, Steiger S and Witzigmann B 2008 J. Comput. Electron. 7 521
|
[14] |
Gu Y X, Yang T, Ji H M, Xu P F and Wang Z G 2010 Chin. Phys. B 19 088102
|
[15] |
Schliwa A 2007 Electronic Properties of Self-organized Quantum Dots Ph.D. Thesis (Berlin: The Technical University of Berlin)
|
[16] |
Stier O 2000 Electronic and Optical Properties of Quantum Dots and Wires (Berlin: Wissenschaft and Technik Verlag)
|
[17] |
Foreman B A 1997 Phys. Rev. B 56 R12748
|
[18] |
Burt M G 1992 J. Phys.: Condens. Matter 4 6651
|
[19] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
[20] |
Chuang S L 1991 Phys. Rev. B 43 9658
|
[21] |
Ke S H, Wang R Z and Huang M C 1993 Acta Phys. Sin. 42 1510 (in Chinese)
|
[22] |
Veprek R G, Steiger S and Witzigmann B 2007 Phys. Rev. B 76 165320
|
[23] |
Tompsett M F 1972 J. Vac. Sci. Technol. 9 166
|
[24] |
Fang Z M , Ma K Y, Jaw D H, Cohen R M and Stringfellow G B 1990 J. Appl. Phys. 67 7034
|
[25] |
Sato T, Kondo Y, Sekiguchi T and Suemasu T 2008 Appl. Phys. Expr. 1 111202
|
[26] |
Matthews J E and Blakeslee A E 1974 J. Cryst. Growth 27 118
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|