Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077301    DOI: 10.1088/1674-1056/20/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model

Wang Ming(汪明), Gu Yong-Xian(谷永先), Ji Hai-Ming(季海铭), Yang Tao(杨涛), and Wang Zhan-Guo(王占国)
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We investigate the band structure of a compressively strained In(Ga)As/In0.53Ga0.47As quantum well (QW) on an InP substrate using the eight-band k·p theory. Aiming at the emission wavelength around 2.33 μm, we discuss the influences of temperature, strain and well width on the band structure and on the emission wavelength of the QW. The wavelength increases with the increase of temperature, strain and well width. Furthermore, we design an InAs /In0.53Ga0.47As QW with a well width of 4.1 nm emitting at 2.33 μm by optimizing the strain and the well width.
Keywords:  band structure      eight-band k·p theory      strained quantum well      peak emission wavelength  
Received:  15 December 2010      Revised:  01 February 2011      Accepted manuscript online: 
PACS:  73.21.Fg (Quantum wells)  
  78.67.De (Quantum wells)  
  78.20.Bh (Theory, models, and numerical simulation)  

Cite this article: 

Wang Ming(汪明), Gu Yong-Xian(谷永先), Ji Hai-Ming(季海铭), Yang Tao(杨涛), and Wang Zhan-Guo(王占国) Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model 2011 Chin. Phys. B 20 077301

[1] Choi H K 2004 Long-Wavelength Infrared Semiconductor Lasers (Hoboken: Wiley)
[2] Turner G W, Choi H K and Manfra M J 1998 Appl. Phys. Lett. 72 876
[3] Hummer M, Rubner K, Benkert A and Forchel A 2004 IEEE Photon. Technol. Lett. 16 380
[4] Gu Y, Wang K, Li Y Y, Li C and Zhang Y G 2010 Chin. Phys. B 19 077304
[5] Sato T, Mitsuhara K, Watanabe T, Kasaya K, Takeshita T and Kondo Y 2007 IEEE J. Sel. Topics Quantum Electron. 13 1079
[6] Sato T, Mitsuhara M, Kakitsuka T and Fujisawa T 2008 IEEE J. Sel. Topics Quantum Electron. 14 992
[7] Sato T, Mitsuhara M and Kondo Y 2008 The 2008 IEEE 20th Conference on Indium Phosphide and Related Materials Versailles, France May 7—25, 2008 p. 1
[8] Tourni'e E, Grunberg P, Fouillant C, Baranov A, Joulli'e A and Ploog K H 1994 Solid State Electron. 37 1311
[9] Mitsuhara M and Kondo Y 2007 Electron. Lett. 43 1143
[10] Sato T, Mitsuhara M, Nunoya N, Kasaya K, Kano F, Takeshita T and Kondo Y 2007 Proc. 20th Annual Meeting of IEEE Lasers and Electro-Optics Society Piscataway, USA, October 21—25, 2007 p. 697
[11] Fujisawa T, Sato T, Mitsuhara M, Kakitsuka T, Yamanaka T, Kondo Y and Kano Y 2009 IEEE J. Quantum Electron. 45 1183
[12] Lassen B, Lew Yan Voon L C, Willatzen M and Melnik R 2004 Solid State Commun 132 141
[13] Veprek R G, Steiger S and Witzigmann B 2008 J. Comput. Electron. 7 521
[14] Gu Y X, Yang T, Ji H M, Xu P F and Wang Z G 2010 Chin. Phys. B 19 088102
[15] Schliwa A 2007 Electronic Properties of Self-organized Quantum Dots Ph.D. Thesis (Berlin: The Technical University of Berlin)
[16] Stier O 2000 Electronic and Optical Properties of Quantum Dots and Wires (Berlin: Wissenschaft and Technik Verlag)
[17] Foreman B A 1997 Phys. Rev. B 56 R12748
[18] Burt M G 1992 J. Phys.: Condens. Matter 4 6651
[19] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[20] Chuang S L 1991 Phys. Rev. B 43 9658
[21] Ke S H, Wang R Z and Huang M C 1993 Acta Phys. Sin. 42 1510 (in Chinese)
[22] Veprek R G, Steiger S and Witzigmann B 2007 Phys. Rev. B 76 165320
[23] Tompsett M F 1972 J. Vac. Sci. Technol. 9 166
[24] Fang Z M , Ma K Y, Jaw D H, Cohen R M and Stringfellow G B 1990 J. Appl. Phys. 67 7034
[25] Sato T, Kondo Y, Sekiguchi T and Suemasu T 2008 Appl. Phys. Expr. 1 111202
[26] Matthews J E and Blakeslee A E 1974 J. Cryst. Growth 27 118
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[3] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[4] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[5] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[6] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[7] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[8] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[9] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[10] Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate
S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰). Chin. Phys. B, 2021, 30(12): 126804.
[11] Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application
Hai-Qing Xie(谢海情), Dan Wu(伍丹), Xiao-Qing Deng(邓小清), Zhi-Qiang Fan(范志强), Wu-Xing Zhou(周五星), Chang-Qing Xiang(向长青), and Yue-Yang Liu(刘岳阳). Chin. Phys. B, 2021, 30(11): 117102.
[12] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[13] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[14] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[15] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
No Suggested Reading articles found!