Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067503    DOI: 10.1088/1674-1056/20/6/067503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetoelectric effect in layered composites with arc shape

Bi Ke (毕科), Wu Wei (吴玮), Wang Yin-Gang (王寅岗)
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  Magnetoelectric (ME) layered Ni/PZT/Ni composites with arc shape have been prepared by using electroless deposition. The ME effect is measured by applying both constant and alternating magnetic fields in longitudinal and transverse directions. The longitudinal ME voltage coefficient is much larger than the transverse one. With the increase of arc length or decrease of curvature, the resonance frequency of layered arc Ni/PZT/Ni composites gradually decreases, while the maximum of the ME voltage coefficient of the composites increases monotonously. The influence of the arc length and the curvature on ME coupling is discussed. The flat interface between the ferromagnetic and the piezoelectric phases in layered ME composites is believed to provide large ME voltage coefficient.
Keywords:  magnetoelectric      arc-shaped      electroless deposition      resonance frequency  
Received:  09 November 2010      Revised:  17 January 2011      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  77.65.Fs (Electromechanical resonance; quartz resonators)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2010505) and the Funding of Jiangsu Innovation Program for Graduate Education (Grant No. CX10B 099Z).

Cite this article: 

Bi Ke (毕科), Wu Wei (吴玮), Wang Yin-Gang (王寅岗) Magnetoelectric effect in layered composites with arc shape 2011 Chin. Phys. B 20 067503

[1] Fetisov Y K, Bush A A, Kamentsev K E, Ostashchenko A Y and Srinivasan G 2006 IEEE Sens. J. 6 935
[2] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[3] Israel C, Mathur N D and Scott J F 2008 Nature Mater. 7 93
[4] Folen V J, Rado G T and Stalder E W 1961 Phys. Rev. Lett. 6 607
[5] Feng H J and Liu F M 2008 Chin. Phys. B 17 1874
[6] Feng H J and Liu F M 2009 Chin. Phys. B 18 2487
[7] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[8] Nan C W, Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
[9] Nan C W 1994 Phys. Rev. B 50 6082
[10] Bi K, Wang Y G, Pan D A and Wu W 2010 Scripta Mater. 63 589
[11] Bichurin M I, Petrov V M, Kiliba Y V and Srinivasan G 2002 it Phys. Rev. B 66 134404
[12] Dong S X, Zhai J Y, Xing Z P, Li J F and Viehland D 2007 it Appl. Phys. Lett. 91 022915
[13] Jia Y M, Luo H S, Zhao X Y and Wang F F 2008 Adv. Mater. 20 4776
[14] Pan D A, Bai Y, Volinsky A A, Chu W Y and Qiao L J 2008 it Appl. Phys. Lett. 92 052904
[15] Wang Y, Or S W, Chan H L W, Zhao X and Luo H 2008 Appl. Phys. Lett. 93 213504
[16] Zeng M, Or S W and Chan H L W 2010 J. Appl. Phys. 107 074509
[17] Leung C M, Or S W, Zhang S and Ho S L 2010 J. Appl. Phys. 107 09D918
[18] Pan D A, Bai Y, Chu W Y and Qiao L J 2008 J. Phys.: Condens. Matter. 20 025203
[19] Pan D A, Zhang S G, Tian J J, Sun J S, Volinsky A A and Qiao L J 2010 Chin. Phys. B 19 027201
[20] Wan J G, Li Z Y, Wang Y, Zeng M, Wang G H and Liu J M 2005 it Appl. Phys. Lett. 86 202504
[21] Barker B D 1981 Surf. Technol. 12 77
[22] Bi K and Wang Y G 2010 Solid State Commun. 150 248
[23] Bi K, Wang Y G, Wu W and Pan D A 2010 J. Phys. D: Appl. Phys. 43 132002
[24] Pan D A, Tian J J, Zhang S G, Sun J S, Volinsky A A and Qiao L J 2009 Mater. Sci. Eng. B 163 114
[1] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[2] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[3] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[4] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[5] Insights into the regulation mechanism of ring-shaped magnetoelectric energy harvesters via mechanical and magnetic conditions
Yang Shi(师阳), Ni Li(李妮), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(10): 107503.
[6] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[7] Analysis of iris-loaded resonance cavity in miniaturized maser
Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣). Chin. Phys. B, 2020, 29(5): 050601.
[8] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[9] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[10] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[11] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[12] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[13] Nonvolatile control of transport and magnetic properties in magnetoelectric heterostructures by electric field
Qian Li(李潜), Dun-Hui Wang(王敦辉), Qing-Qi Cao(曹庆琪), You-Wei Du(都有为). Chin. Phys. B, 2017, 26(9): 097502.
[14] Giant low-frequency magnetoelectric torque (MET) effect in polyvinylidene-fluoride (PVDF)-based MET device
Chun-Lei Zheng(郑春蕾), Yi-Wei Liu(刘宜伟), Qing-Feng Zhan(詹清峰), Yuan-Zhao Wu(巫远招), Run-Wei Li(李润伟). Chin. Phys. B, 2017, 26(6): 067703.
[15] Magnetoelectric effect in multiferroic NdMn2O5
Syed Hamad Bukhari, Javed Ahmad. Chin. Phys. B, 2017, 26(1): 018103.
No Suggested Reading articles found!