Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067703    DOI: 10.1088/1674-1056/26/6/067703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Giant low-frequency magnetoelectric torque (MET) effect in polyvinylidene-fluoride (PVDF)-based MET device

Chun-Lei Zheng(郑春蕾)1,2,3, Yi-Wei Liu(刘宜伟)1,2, Qing-Feng Zhan(詹清峰)1,2, Yuan-Zhao Wu(巫远招)1,2, Run-Wei Li(李润伟)1,2
1 Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
2 Zhejiang Provincial Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
Abstract  A polyvinylidene-fluoride (PVDF)-based magnetoelectric torque (MET) device is designed with elastic layer sandwiched by PVDF layers, and low-frequency MET effect is carefully studied. It is found that elastic modulus and thickness of the elastic layer have great influences on magnetoelectric (ME) voltage coefficient (αME) and working range of frequency in PVDF-based MET device. The decrease of the modulus and thickness can help increase the αME. However, it can also reduce the working range in the low frequency. By optimizing the parameters, the giant αME of 320 V/cm·Oe (1 Oe=79.5775 A·m-1) at low frequency (1 Hz) can be obtained. The present results may help design PVDF-based MET low-frequency magnetic sensor with improved magnetic sensitivity in a relative large frequency range.
Keywords:  magnetoelectric torque effect      piezoelectric      ME voltage coefficient  
Received:  30 December 2016      Revised:  07 March 2017      Accepted manuscript online: 
PACS:  77.65.Ly (Strain-induced piezoelectric fields)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51525103, 51522105, and 11304326), the National Key Technology Research and Development Program of China (Grant No. 2016YFA0201102), Ningbo Municipal Science and Technology Innovation Team, China (Grant No. 2015B11001), and the Ningbo Municipal Major Science and Technology Projects, China (Grant No. 2015B11027).
Corresponding Authors:  Yi-Wei Liu, Run-Wei Li     E-mail:  liuyw@nimte.ac.cn;runweili@nimte.ac.cn

Cite this article: 

Chun-Lei Zheng(郑春蕾), Yi-Wei Liu(刘宜伟), Qing-Feng Zhan(詹清峰), Yuan-Zhao Wu(巫远招), Run-Wei Li(李润伟) Giant low-frequency magnetoelectric torque (MET) effect in polyvinylidene-fluoride (PVDF)-based MET device 2017 Chin. Phys. B 26 067703

[1] McCorkle P 1923 Phys. Rev. 22 271
[2] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[3] Dong S X, Li J F and Viehland D 2004 Appl. Phys. Lett. 85 2307
[4] Israel C, Mathur N D and Scott J F 2008 Nat. Mater. 7 93
[5] Li P, Wen Y M, Liu P G, Li X S and Jia C B 2010 Sensor. Actuator A-Phys. 157 100
[6] Xing Z P, Zhai J Y, Dong S X, Li J F, Viehland D and Odendaal W G 2008 Meas. Sci. Technol. 19 015206
[7] Astrov D N 1960 Sov. Phys. JETP 11 708
[8] Vandenboomgaard J, Terrell D R, Born R A J and Giller H F J I 1974 J. Mater. Sci. 9 1705
[9] Ryu J, Carazo A V, Uchino K and Kim H E 2001 Jpn. J. Appl. Phys. 40 4948
[10] Ryu J H, Priya S, Carazo A V, Uchino K and Kim H E 2001 J. Am. Ceram. Soc. 84 2905
[11] Dong S, Zhai J, Bai F, Li J F and Viehland D 2005 Appl. Phys. Lett. 87 062502
[12] Dong S X, Zhai J Y, Li J F and Viehland D 2006 Appl. Phys. Lett. 89 122903
[13] Dong S X, Cheng J R, Li J F and Viehland D 2003 Appl. Phys. Lett. 83 4812
[14] Dong S X, Li J F, and Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1253
[15] Dong S X, Li J F and Viehland D 2004 J. Appl. Phys. 95 2625
[16] Zhai J Y, Dong S X, Xing Z P, Li J F and Viehland D 2006 Appl. Phys. Lett. 89 083507
[17] Zhai J Y, Xing Z P, Dong S X, Li J F and Viehland D 2008 J. Am. Ceram. Soc. 91 351
[18] Dong S X, Zhai J Y, Li J F and Viehland D 2006 Appl. Phys. Lett. 89 252904
[19] Wang Y J, Or S W, Chan H L W, Zhao X Y and Luo H S 2008 Appl. Phys. Lett. 92 123510
[20] Xing Z P, Li J F and Viehland D 2008 Appl. Phys. Lett. 93 013505
[21] Xing Z P and Xu K 2013 Sens. Actuator A-Phys. 189 182
[22] Xing Z P, Xu K, Dai G Y, Li J F and Viehland D 2011 J. Appl. Phys. 110 104510
[23] Liu Y W, Zhan Q F and Li R W 2013 Chin. Phys. B 22 127502
[24] Liu L P, Zhan Q F, Rong X, Yang H L, Xie Y L, Tan X H and Li R W 2016 Chin. Phys. B 25 077307
[25] Xing Z P, Zhai J Y, Li J F and Viehland D 2009 J. Appl. Phys. 106 024512
[26] Zhang Y 2008 J. Appl. Mech. 75 011008
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[3] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[4] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[5] Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3
Zhongxu Li(李忠旭), Kai Huang(黄凯), Yanda Ji(吉彦达), Yang Chen(陈阳), Xiaomeng Zhao(赵晓蒙), Min Zhou(周民), Tiangui You(游天桂), Shibin Zhang(张师斌), and Xin Ou(欧欣). Chin. Phys. B, 2021, 30(10): 106103.
[6] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[7] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[8] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[9] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[10] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[11] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[12] Depolarization field in relaxor-based ferroelectric single crystals under one-cycle bipolar pulse drive
Chuan-Wen Chen(陈传文), Yang Xiang(项阳), Li-Guo Tang(汤立国), Lian Cui(崔莲), Bao-Qing Lin(林宝卿), Wei-Dong Du(杜伟东), Wen-Wu Cao(曹文武). Chin. Phys. B, 2019, 28(12): 127702.
[13] Harvesting base vibration energy by a piezoelectric inverted beam with pendulum
Jia-Nan Pan(潘家楠), Wei-Yang Qin(秦卫阳), Wang-Zheng Deng(邓王蒸), Hong-Lei Zhou(周红磊). Chin. Phys. B, 2019, 28(1): 017701.
[14] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
[15] First principles study on lattice vibration and electrical properties of layered perovskite Sr2M2O7 (M=Nb, Ta)
Xing Liu(刘星), Hui-Qing Fan(樊慧庆). Chin. Phys. B, 2018, 27(8): 086104.
No Suggested Reading articles found!