Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 063103    DOI: 10.1088/1674-1056/20/6/063103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Multi-configuration Dirac–Hartree–Fock (MCDHF) calculations for Zn-like sequence from Z=48 to 54

Hu Feng (胡峰)ab, Jiang Gang (蒋刚)a, Yang Jia-Min (杨家敏)bWang Chuan-Ke (王传珂)bZhao Xue-Feng (赵学峰)aZang Hua-Ping (臧华萍)b
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, China; b Research Centre of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang 621900, China
Abstract  The 4s4p excitation energies and the 4s2-4s4p E1 transitions for zinc-like ions from Z=48 to 54 are calculated by the multi-configuration Dirac-Hartree-Fock (MCDHF) method in this paper. The results for fine-structure energy levels, wavelengths and lifetimes between Z=48 (Cd) and Z=54 (Xe) are presented and compared with other theoretical and experimental results. The calculated values including core-valence correlation are found to be very similar to other theoretical and experimental values. We believe that our calculated values can guide experimentalists in identifying the fine-structure levels in their future work.
Keywords:  core valence correction      multi-configuration Dirac-Hartree-Fock      energy level      wavelength  
Received:  26 August 2010      Revised:  07 December 2010      Accepted manuscript online: 
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.30.jc (Relativistic corrections to atomic structure and properties)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Fund: Project supported by the National High Technology Research and Development Program of China, the National Natural Science Foundation of China (Grant No. 10874156), and the Key Science and Technology Foundation of the China Academy of Engineering Physics (Grant No. 2010A0102003).

Cite this article: 

Hu Feng (胡峰), Jiang Gang (蒋刚), Yang Jia-Min (杨家敏), Wang Chuan-Ke (王传珂), Zhao Xue-Feng (赵学峰), Zang Hua-Ping (臧华萍) Multi-configuration Dirac–Hartree–Fock (MCDHF) calculations for Zn-like sequence from Z=48 to 54 2011 Chin. Phys. B 20 063103

[1] Joshi Y N and van Kleef Th A M 1986 Phys. Scr. 34 135
[2] Trigueiros A, Pettersson S G and Reyna Almandos J G 1986 it Phys. Scr. 34 164
[3] Litzen U and Reader J 1987 Phys. Rev. A 36 5159
[4] Churilov S S, Ryabtsev A N and Wyart J F 1988 Phys. Scr. 38 326
[5] NIST Atomic Spectra Database http://physics.nist.gov/ PhysRefData/ASD
[6] Liu Y, Hutton R, Zou Y anderson M and Brage T 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3147
[7] Reader J and Luther G 1980 Phys. Rev. Lett. 45 609
[8] Acquista N and Reader J 1984 J. Opt. Soc. Am. B 1 649
[9] Seely J F, Ekberg J O, Brown C M, Feldman U, Behring W E, Reader J and Richardson M C 1986 Phys. Rev. Lett. 57 2924
[10] Brown C M, Seely J F, Kania D R, Hammel B A, Back C A, Lee R W, Bar-Shalon A and Behring W E 1994 At. Data Nucl. Data Tables 58 203
[11] Hinnov E, Beiersdorfer P, Bell R, Stevens J, Suckewer S, von Goeler S, Wouters A, Dietrich D, Gerassimenko M and Silver E 1987 Phys. Rev. A 35 4876
[12] Sugar J, Kaufman V, Balk D H and Kim Y K 1991 J. Opt. Soc. Am. B 8 1795
[13] Sugar J, Kaufman V and Rowan L 1993 J. Opt. Soc. Am. B 10 799
[14] Träbert, Beiersdorfer P, Fournier K B, Utter S B and Wong K L 2001 Can. J. Phys. 79 153
[15] Utter S B, Beiersdorfer P and Träbert E 2002 Can. J. Phys. 80 1503
[16] Utter S B, Beiersdorfer P and Träbert E 2001 Can. J. Phys. 81 9111
[17] Träbert E, Beiersdorfer P, Fournier K B and Chen M H 2005 Can. J. Phys. 83 829
[18] Cheng K T and Wagner R A 1987 Phys. Rev. A 36 5435
[19] Biémont E 1989 At. Data Nucl. Data Tables 43 163
[20] Indelicato P and Desclaux J P 1990 Phys. Rev. A 42 5139
[21] Biémont E, Quinet P and Fawcett B C 1989 Phys. Scr. 39 562
[22] Chou H S, Chi H C and Huang K N 1994 Phys. Rev. A 49 2394
[23] Vilkas M J and Ishikawa Y 2005 Phys. Rev. A 72 032512
[24] Blundell S A, Johnson W R, Safronova M S and Safronova U I 2008 Phys. Rev. A 77 032507
[25] Chen M H and Cheng K T 2010 J. Phys. B: At. Mol. Opt. Phys 43 074019
[26] Hu F, Jiang G, Yang J M, Wang C K, Zhao X F and Hao L H 2010 Eur. Phys. J. D 61 15
[27] Hu F, Jiang G, Hong W and Hao L H 2008 Eur. Phys. J. D 49 293
[28] Hao L H, Jiang G, Song S Q and Hu F 2008 At. Data Nucl. Data Tables 94 739
[29] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) pp. 281-295
[30] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
[31] Jönsson P, He X, Fischer C F and Grant I P 2007 it Comput. Phys. Commun. 177 597
[32] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249
[33] Olsen J, Godefroid M R, Jonsson P A, Malmquist P A and Froese F C 1995 Phys. Rev. E 52 4499
[34] Fischer C F, Brage T and Jönsson P 1997 Computational Atomic Structure (Bristol: Institute of Physics Publishing) p. 52
[35] Ding X B and Dong C Z 2004 Acta Phys. Sin. 53 3326 (in Chinese)
[36] Gao C S, Shen Y F and Zeng J L 2008 Acta Phys. Sin. 57 4059 (in Chinese)
[37] Fleming J and Hibbert A 1995 Phys. Scr. 51 139
[38] Fischer C F and Hansen J E 1978 Phys. Rev. A 17 1956
[1] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[2] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[3] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[4] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[7] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[8] Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions (Z = 57, 60, 62, 64, 65)
Bao-Ling Shi(施宝玲), Yi Qin(秦毅), Xiang-Fu Li(李向富), Bang-Lin Deng(邓邦林), Gang Jiang(蒋刚), and Xi-Long Dou(豆喜龙). Chin. Phys. B, 2022, 31(5): 053102.
[9] High-performance and fabrication friendly polarization demultiplexer
Huan Guan(关欢), Yang Liu(刘阳), and Zhiyong Li (李智勇). Chin. Phys. B, 2022, 31(3): 034203.
[10] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[11] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[12] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[13] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[14] Transition parameters of Li-like ions (Z=7-11) in dense plasmas
Xiang-Fu Li(李向富), Li-Ping Jia(贾利平), Hong-Bin Wang(王宏斌), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(5): 053102.
[15] Isotope shift of the 2s 2S1/2 $\rightarrow$ 2p 2P1/2,3/2 transitions of Li-like Ca ions
Denghong Zhang(张登红), Fangjun Zhang(张芳军), Xiaobin Ding(丁晓彬), and Chenzhong Dong(董晨钟). Chin. Phys. B, 2021, 30(4): 043102.
No Suggested Reading articles found!