|
|
Geometrical structures, vibrational frequencies, force constants and dissociation energies of isotopic water molecules (H2O, HDO, D2O, HTO, DTO, and T2O) under dipole electric field |
Shi Shun-Ping(史顺平)a)†, Zhang Quan(张全) b), Zhang Li(张莉)a), Wang Rong(王蓉)a), Zhu Zheng-He(朱正和)a), Jiang Gang(蒋刚) a), and Fu Yi-Bei(傅依备)c) |
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b School of Mechanical Engineering & Automation, Xihua University, Chengdu 610039, China; c China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract The dissociation limits of isotopic water molecules are derived for the ground state. The equilibrium geometries, the vibrational frequencies, the force constants and the dissociation energies for the ground states of all isotopic water molecules under the dipole electric fields from -0.05 a.u. to 0.05 a.u. are calculated using B3P86/6-311++G(3df,3pf). The results show that when the dipole electric fields change from -0.05 a.u. to 0.05 a.u., the bond length of H-O increases whereas the bond angle of H-O-H decreases because of the charge transfer induced by the applied dipole electric field. The vibrational frequencies and the force constants of isotopic water molecules change under the influence of the strong external torque. The dissociation energies increase when the dipole electric fields change from -0.05 a.u. to 0.05 a.u. and the increased dissociation energies are in the order of H2O, HDO, HTO, D2O, DTO, and T2O under the same external electric fields.
|
Received: 22 March 2010
Revised: 29 April 2010
Accepted manuscript online:
|
PACS:
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
31.30.Gs
|
(Hyperfine interactions and isotope effects)
|
|
33.15.Dj
|
(Interatomic distances and angles)
|
|
33.15.Fm
|
(Bond strengths, dissociation energies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10676022). |
Cite this article:
Shi Shun-Ping(史顺平), Zhang Quan(张全), Zhang Li(张莉), Wang Rong(王蓉), Zhu Zheng-He(朱正和), Jiang Gang(蒋刚), and Fu Yi-Bei(傅依备) Geometrical structures, vibrational frequencies, force constants and dissociation energies of isotopic water molecules (H2O, HDO, D2O, HTO, DTO, and T2O) under dipole electric field 2011 Chin. Phys. B 20 063102
|
[1] |
Sugiyama T, Asakura Y, Uda T, Shiozaki T, Enokida Y and Yamamoto I 2006 Fusi. Engi. Desi. 81 833
|
[2] |
Engel V, Staemmler V, Vander Wal R L, Crim F F, Sension R J, Hudson B andresen P, Hennig S, Weide K and Schinke R 1992 J. Phys. Chem. 96 3201
|
[3] |
Meng N, Leung M K H, Leung D Y C and Sumathy K 2007 Rene. Sust. Ener. Rev. 11 401
|
[4] |
Benedek N A, Snook I K, Towler M D and Needs R J 2006 J. Chem. Phys. 125 104302
|
[5] |
Francesca I, Rossend R, Thomas E and James T H 2009 J. Phys. Chem. A 113 6657
|
[6] |
Kim H D and Koji A 2009 J. Chem. Phys. 131 064501
|
[7] |
Scott H, Thomas E M and David E M 2009 J. Chem. Phys. 131 024501
|
[8] |
Zhu S B, Yao S, Zhu J B, Singh S and Robinson G W 1991 J. Phys. Chem. 95 6211
|
[9] |
Lie G C and Clementi E 1986 Phys. Rev. A 33 2679
|
[10] |
Thom H D, Russell M P and Soe A 1972 J. Chem. Phys. 57 5044
|
[11] |
Ermler W C and Kern C W 1971 J. Chem. Phys. 55 4851
|
[12] |
Falk M 1984 Spec. Act. 40 43
|
[13] |
Császár A G, Czak'o G, Furtenbacher T, Tennyson J, Szalay V, Shirin S V, Zobov N F and Polyansky O L 2005 J. Chem. Phys. 122 214305
|
[14] |
Barletta P, Shirin S V, Zobov N F, Polyansky O L, Tennyson J, Valeev E F and Császár A G 2006 J. Chem. Phys. 125 204307
|
[15] |
Partridge H and Schwenke D W 1997 J. Chem. Phys. 106 4618
|
[16] |
Zobov N F, Polyansky O L, Sueur C R L and Tennyson J 1996 Chem. Phys. Lett. 260 381
|
[17] |
Csaszar A G and Mills I M 1997 Spec. Acta Part A 53 1101
|
[18] |
Jursic B S and Martin R M 1996 Int. J. Quantum Chem. 59 495
|
[19] |
Martin J M L, Fraryois J P and Gijbels R 1992 J. Chem. Phys. 96 15
|
[20] |
Benedict W S, Gailar N and Plyler E K 1956 J. Chem. Phys. 24 1139
|
[21] |
Thiessen W E and Narten A H 1982 J. Chem. Phys. 77 2656
|
[22] |
Soper A K 2000 Chem. Phys. 258 121
|
[23] |
Krohn B J, Ermler W C and Kern C W 1974 J. Chem. Phys. 60 22
|
[24] |
Ruan W, Luo W L, Zhang L, Zhu Z H and Fu Y B 2009 Acta Phys. Sin. 58 1537 (in Chinese)
|
[25] |
Botter R, Dibeler V H, Walker J A and Rosenstock H M 1966 J. Chem. Phys. 44 1271
|
[26] |
McCulloh K E 1976 Int. J. Mass Spec. Ion Phys. 21 333
|
[27] |
Wiedmann R T, Tonkyn R G, White M G, Wang K and McKay V 1992 J. Chem. Phys. 97 768
|
[28] |
Van Lonkhuyzen H D and de Lange C A 1984 Mol. Phys. 51 551
|
[29] |
Barr J D, Fanis A D, Dyke J M, Gamblin S D, Hooper N, Morris A, Stranges S, West J B and Wright T G 1999 J. Chem. Phys. 110 345
|
[30] |
Pakoulev A, Wang Z H, Pang Y and Dlott D D 2003 Chem. Phys. Lett. 380 404
|
[31] |
Carleer M, Jenouvrier A, Vandaele A C, Bernath P F, Merienne M F, Colin R, Zobov N F, Polyansky O L, Tennyson J and Savin V A 1999 J. Chem. Phys. 111 2444
|
[32] |
Ulenikov O N, Cherepanov V N and Malikova A B 1991 J. Mol. Spec. 146 97
|
[33] |
Cope S D, Russell D K, Fry H A, Jones L H and Barefield J E 1988 J. Mol. Spec. 127 464
|
[34] |
Wilemski G 1978 J. Quantum Spec. Radi. Tran. 20 291
|
[35] |
Fry H A, Jones L H and Barefield J E 1984 J. Mol. Spec. 103 41
|
[36] |
Cope S D, Russell D K, Fry H A, Jones L H and Barefield J E 1986 J. Mol. Spec. 120 311
|
[37] |
Odde S, Mhin B J, Lee S, Lee H M and Kim K S 2004 J. Chem. Phys. 120 9524
|
[38] |
Ruan W, Luo W L, Zhang L and Zhu Z H 2009 Sci. Chin. G 52 566
|
[39] |
Luo W L, Ruan W, Zhang L, Xie A D and Zhu Z H 2008 Acta Phys. Sin. 57 4833 (in Chinese)
|
[40] |
Becke A D 1993 J. Chem. Phys. 98 5648
|
[41] |
Xu M, Wang R K, Linghu R F and Yang X D 2007 Acta Phys. Sin. 56 769 (in Chinese)
|
[42] |
Wang Q M, Ren T Q and Zhu J L 2009 Acta Phys. Sin. 58 5266 (in Chinese)
|
[43] |
Wang Q M, Ren T Q and Zhu J L 2009 Acta Phys. Sin. 58 5270 (in Chinese)
|
[44] |
Fan X W, Geng Z D and Zhang Y S 2005 Acta Phys. Sin. 54 5614 (in Chinese)
|
[45] |
Li Q and Zhu Z H 2006 Acta Phys. Sin. 55 102 (in Chinese)
|
[46] |
Zhu J L, Ren T Q and Wang Q M 2009 Acta Phys. Sin. 58 3047 (in Chinese)
|
[47] |
Zhu S B, Zhu J B and Robinson G W 1991 Phys. Rev. A 44 2602
|
[48] |
Jung D H, Yang J H and Jhon M S 1999 Chem. Phys. 244 331
|
[49] |
Rajgara F A, Dharmadhikari A K, Mathur D and Safvan C P 2009 J. Chem. Phys. 130 231104
|
[50] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 Gaussian 03, Revison B02, (Pittsburgh: Gaussian, Inc. PA)
|
[51] |
Perdew J P 1986 Phys. Rev. B 33 8822
|
[52] |
Clark T, Chandrasekhar J, Spitznagel G W and Ragué Schleyer P V 2004 J. Comp. Chem. 4 294
|
[53] |
Frisch M J, Pople J A and Binkley J S 1984 J. Chem. Phys. 80 3265
|
[54] |
Zhu Z H 1996 Atomic and Molecular Reactive Statics (Beijing: Science Press) (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|