Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 057701    DOI: 10.1088/1674-1056/20/5/057701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Microwire formation based on dielectrophoresis of electroless gold plated polystyrene microspheres

Jiang Hong-Yuan(姜洪源)a)b), Ren Yu-Kun(任玉坤) a)†, and Tao Ye(陶冶)a)
a School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; b State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Abstract  Microspheres coated with a perfectly conductive surface have many advantages in the applications of biosensors and micro-electromechanical systems. Polystyrene microspheres with the diameter of 10 upmum were coated with a 50 nm-thick gold layer using an electroless gold plating approach. Dielectrophoresis (DEP) for bare microspheres and shelled microspheres was theoretically analysed and the real part of the Clausius–Mossotti factor was calculated for the two kinds of microspheres. The experiments on the dielectrophoretic characterisation of the uncoated polystyrene microspheres and gold coated polystyrene microspheres (GCPMs) were carried out. Experimental results showed that the gold coated polystyrene microspheres were only acted by a positive dielectrophoretic force when the frequency was below 40M Hz, while the uncoated polystyrene microspheres were governed by a negative dielectrophoretic force in this frequency range. The gold coated polystyrene microspheres were exploited to form the microwire automatically according to their stable dielectrophoretic and electric characterisations.
Keywords:  dielectrophoresis      gold coated polystyrene microspheres      microwire  
Received:  12 October 2010      Revised:  21 December 2010      Accepted manuscript online: 
PACS:  77.22.-d (Dielectric properties of solids and liquids)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51075087), the State Key Laboratory of Fluid Power Transmission and Control, ZheJiang University of China (Grnat No. GZKF-201004), and the China Scholarship Council (Grant No. 2009612129).

Cite this article: 

Jiang Hong-Yuan(姜洪源), Ren Yu-Kun(任玉坤), and Tao Ye(陶冶) Microwire formation based on dielectrophoresis of electroless gold plated polystyrene microspheres 2011 Chin. Phys. B 20 057701

[1] Pohl H A 1951 J. Appl. Phys. 22 869
[2] Pohl H A 1978 Dielectrophoresis (London: Cambridge University Press)
[3] Jones T B 1995 Electromechanics of Particles (Cambridge: Cambridge University Press)
[4] Pethig R 1996 Crit. Rev. Biotech. 16 331
[5] Pethig R 2010 Biomicrofluidics 4 022811
[6] Jiang H Y, Ren Y K, Ao H R and Ramos A 2008 Chin. Phys. B 17 4541
[7] Ren Y K, Yan H, Jiang H Y, Gu J Z and Ramos A 2009 Chin. Phys. B 18 4349
[8] Ren Y K, Ao H R, Gu J Z, Jiang H Y and Ramos A 2009 Acta Phys. Sin. 58 7869 (in Chinese)
[9] Green N G and Morgan H 1997 J. Phys. D 30 2626
[10] Peter R C and Gascoyne J 2002 Electrophoresis 23 1973
[11] Nad I B, Xuan X, Lee J and Li D Q 2006 Lab Chip 6 274
[12] Hughes M P, Morgan H, Rixon F J, Burt J P H and Pethig R 1998 Biochim. Biophys. Acta 119 1425
[13] Hughes M P, Morgan H and Rixon F J 2001 Eur. Biophys. J. 30 268
[14] Huang J T, Hou S Y, Fang S B, Wei H W, Lee H C and Yang C Z 2008 J. Ind. Microbiol. Biotechnol. 35 1377
[15] Yang F, Yang X M, Jiang H, Bulkhaults P, Wood P, Hrushesky W and Wang G 2010 Biomicrofluidics 4 013204
[16] Zimmermann D, Zhou A, Kiesel M, Feldbauer K, Terpitz U, Haase W, Schneider-Hohendorf T, Bamberg E and Sukhorukov V L 2008 Biochem. Biophys. Res. Commun. 369 1022
[17] Rose K A, Meier J A, Dougherty G M and Santiago J G 2007 Phys. Rev. E 75 011503
[18] Rose K A, Hoffman B, Saintillan D, Shaqfeh E S G and Santiago J G 2009 Phys. Rev. E 79 011402
[19] Gierhart B C, Howitt D G, Chen S J, Smith R L and Collins S D 2007 Langmuir 23 12450
[20] Zhang L and Zhu Y X 2010 Appl. Phys. Lett. 96 141902
[21] Wang X B, Huang Y, Gascoyne P R C, Becker F F, Holzel R and Pethig R 1994 Biochim. Biophys. Acta 1193 330
[22] Morgan H and Green N G 2003 AC Electrokinetics: Colloids and Nanoparticles (Hert: Research Studies Ltd.) endfootnotesize
[1] Particle captured by a field-modulating vortex through dielectrophoresis force
Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮). Chin. Phys. B, 2022, 31(3): 034703.
[2] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[3] Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field
Bing Yan(严兵), Bo Chen(陈波), Yongliang Xiong(熊永亮), and Zerui Peng(彭泽瑞). Chin. Phys. B, 2021, 30(11): 114701.
[4] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[5] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[6] Fabrication of crystalline selenium microwire
Shuai Peng(彭帅), Guo-Wu Tang(唐国武), Min Sun(孙敏), Wang-Wang Liu(刘旺旺), Xiu-Jie Shan(单秀杰), Qi Qian(钱奇), Dong-Dan Chen(陈东丹), Qin-Yuan Zhang(张勤远), Zhong-Min Yang(杨中民). Chin. Phys. B, 2017, 26(4): 048101.
[7] Nanodots and microwires of ZrO2 grown on LaAlO3 by photo-assisted metal-organic chemical vapor deposition
Feng Guo(郭峰), Xin-Sheng Wang(汪薪生), Shi-Wei Zhuang(庄仕伟), Guo-Xing Li(李国兴), Bao-Lin Zhang(张宝林), Pen-Chu Chou(周本初). Chin. Phys. B, 2016, 25(2): 028103.
[8] Dynamic resistive switching in a three-terminal device based on phase separated manganites
Wang Zhi-Qiang (王志强), Yan Zhi-Bo (颜志波), Qin Ming-Hui (秦明辉), Gao Xing-Sen (高兴森), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(3): 037101.
[9] Vertical assembly of carbon nanotubes for via interconnects
Wei Qin-Qin (魏芹芹), Wei Zi-Jun (魏子钧), Ren Li-Ming (任黎明), Zhao Hua-Bo (赵华波), Ye Tian-Yang (叶天扬), Shi Zu-Jin (施祖进), Fu Yun-Yi (傅云义), Zhang Xing (张兴), Huang Ru (黄如). Chin. Phys. B, 2012, 21(8): 088103.
[10] Annealing effects on the microwave permittivity and permeability properties of Fe79Si16B5 microwires and their micowave absorption performances
Han Man-Gui(韩满贵), Ou Yu (欧雨), Liang Di-Fei (梁迪飞), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2009, 18(3): 1261-1265.
[11] Effect of annealing treatments on the microwave electromagnetic properties of amorphous FeCuNbSiB microwires
Liang Di-Fei(梁迪飞), Han Man-Gui(韩满贵), Yan Bo(鄢波), and Deng Long-Jiang(邓龙江). Chin. Phys. B, 2007, 16(2): 542-547.
No Suggested Reading articles found!