Please wait a minute...
Chinese Physics, 2007, Vol. 16(2): 542-547    DOI: 10.1088/1009-1963/16/2/043
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of annealing treatments on the microwave electromagnetic properties of amorphous FeCuNbSiB microwires

Liang Di-Fei(梁迪飞), Han Man-Gui(韩满贵), Yan Bo(鄢波), and Deng Long-Jiang(邓龙江)
State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  The amorphous FeCuNbSiB microwires are fabricated by using the melt extraction method and annealed separately at temperatures T = 573, 673, 723 and 773K for 1h. The effect of annealing treatment on the microwave electromagnetic properties of FeCuNbSiB wires/wax composites has been investigated for the first time. It is found that in a frequency range of 0.5--4.0GHz, the complex permittivity, permeability, magnetic and electric loss tangents of FeCuNbSiB wires/wax composites are strongly dependent on the annealing temperature and frequency. For T = 573, 723 and 773K, two resonance peaks are found at frequency f = 1.2 and 3.3GHz. However, for T = 673K, only one resonance peak occurs at f = 3.3GHz. The resonance peak at f = 1.2GHz is believed to be due to the stress-induced anisotropy, while the resonance peak at f = 3.3GHz is attributed to the random anisotropy.
Keywords:  amorphous alloys      permeability      permittivity      microwires  
Received:  10 April 2006      Revised:  03 August 2006      Accepted manuscript online: 
PACS:  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
  75.50.Kj (Amorphous and quasicrystalline magnetic materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the Key Foundation of Science for the Young Scholars in University of Electronic Science and Technology of China (Grant No L08010301JX05013).

Cite this article: 

Liang Di-Fei(梁迪飞), Han Man-Gui(韩满贵), Yan Bo(鄢波), and Deng Long-Jiang(邓龙江) Effect of annealing treatments on the microwave electromagnetic properties of amorphous FeCuNbSiB microwires 2007 Chinese Physics 16 542

[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[3] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[4] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[5] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[6] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[7] Effects of square micro-pillar array porosity on the liquid motion of near surface layer
Xiaoxi Qiao(乔小溪), Xiangjun Zhang(张向军), Ping Chen(陈平), Yu Tian(田煜), Yonggang Meng(孟永钢). Chin. Phys. B, 2020, 29(2): 024702.
[8] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
[9] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
[10] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[11] The c-axis complex permittivity and electrical impedance in BaFe2As2:Experimental examination on transformation validity
Yongqiang Li(李永强), Xinzhe Du(杜新哲), Dongliang Gong(龚冬良), Qirui Yang(杨綦睿), Wenliang Zhang(张汶良), Tao Xie(谢涛), Bo Feng(冯波), Kai Chen(陈恺), Huiqian Luo(罗会仟), Junming Liu(刘俊明), Jinsong Zhu(朱劲松). Chin. Phys. B, 2019, 28(5): 057702.
[12] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[13] Ab initio molecular dynamics simulations of nano-crystallization of Fe-based amorphous alloys with early transition metals
Yao-Cen Wang(汪姚岑), Yan Zhang(张岩), Yoshiyuki Kawazoe, Jun Shen(沈军), Chong-De Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116401.
[14] Magnetic properties of Sn-substituted Ni–Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2
M A Ali, M M Uddin, M N I Khan, F U Z Chowdhury, S M Hoque, S I Liba. Chin. Phys. B, 2017, 26(7): 077501.
[15] Study on the dielectric properties of Mg-doped NaBiTi6O14 ceramics
Yong Chen(陈勇), Simin Xue(薛思敏), Qian Luo(骆迁), Huyin Su(苏虎音), Qi Chen(陈琪), Zhen Huang(黄镇), Linfang Xu(徐玲芳), Wanqiang Cao(曹万强), Zhaoxiang Huang(黄兆祥). Chin. Phys. B, 2017, 26(4): 047701.
No Suggested Reading articles found!