Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047503    DOI: 10.1088/1674-1056/20/4/047503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Microstructural, phase transformation and magnetic properties of Ni–Mn–Ga alloy fabricated by spark plasma sintering

Tian Xiao-Hua(田晓华)a)b), Sui Jie-He(隋解和) a), Zhang Xin(张欣)a), Feng Xue(冯雪)a), and Cai Wei(蔡伟) a)†
a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; b College of Applied Science, Harbin University of Science and Technology, Harbin 150080, China
Abstract  The microstructural, phase transformation and magnetic properties of Ni–Mn–Ga alloy fabricated using the spark plasma sintering method have been investigated. The results show that both the as-sintered and annealed sintered specimens exhibit typical martensitic transformation behaviours. The martensite of the sintered specimen after annealing exhibits a ferromagnetic nature. Moreover, study of the fracture surface indicates that the transgranular fracture contributes to the higher ductility of sintered Ni–Mn–Ga alloy. In addition, the transformation strain in sintered Ni–Mn–Ga alloy is studied for the first time.
Keywords:  ferromagnetic shape memory alloys      magnetic properties      martensitic transformations      spark plasma sintering  
Received:  18 November 2010      Revised:  04 December 2010      Accepted manuscript online: 
PACS:  75.50.Cc (Other ferromagnetic metals and alloys)  
  81.30.Kf (Martensitic transformations)  
  64.70.kd (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50971052) and the Scientific Research Fund of Heilongjiang Provincial Education Department of China (Grant No. 11531059).

Cite this article: 

Tian Xiao-Hua(田晓华), Sui Jie-He(隋解和), Zhang Xin(张欣), Feng Xue(冯雪), and Cai Wei(蔡伟) Microstructural, phase transformation and magnetic properties of Ni–Mn–Ga alloy fabricated by spark plasma sintering 2011 Chin. Phys. B 20 047503

[1] Ullakko K, Huang J K, Kantner C, O'Handley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966
[2] Murray S J, Marioni M A, Allen S M, O'Handley R C and Lograsso T A 2000 Appl. Phys. Lett. 77 886
[3] Wu G H, Yu C H and Meng L Q 1999 Appl. Phys. Lett. 75 2990
[4] Jiang C B, Liang T, Xu H B, Zhang M and Wu G H 2002 Appl. Phys. Lett. 81 2818
[5] Murray S J, Marioni M, Tello P G, Allen S M and O'Handley R C 2001 J. Magn. Magn. Mater. 226--230 945
[6] Pons J, Chernenko V A, Santamarta R and Cesari E 2000 Acta Mater. 48 3027
[7] Meng F B, Guo H J, Liu G D, Liu H Y, Dai X F, Luo H Z, Li Y X, Chen J L and Wu G H 2009 Chin. Phys. B 18 3031
[8] Chen D, Chen J D, Ma J Z, Shi D H, Xu G L and Yu B H 2009 Chin. Phys. B 18 744
[9] Sozinov A, Likhachev A A, Lanska N and Ullakko K 2002 Appl. Phys. Lett. 80 1746
[10] Gao L, Cai W, Liu A L and Zhao L C 2006 J. Alloys Compd. 425 314
[11] Tsuchiya K, Tsutsumi A, Ohtsuka H and Umemoto M 2004 Mater. Sci. Eng. A 378 370
[12] Guo S H, Zhang Y H, Zhao Z Q, Qi Y, Quan B Y and Wang X L 2004 J. Rare Earth 22 875
[13] Koho K, Söderberg O, Lanska N, Ge Y, Liu X, Straka L, Vimpari J, Heczko O and Lindroos V K 2004 Mater. Sci. Eng. A 378 384
[14] Wang H B, Chen F, Gao Z Y, Cai W and Zhao L C 2006 Mater. Sci. Eng. A 438--440 990
[15] Zhao Y, Taya M, Kang Y and Kawasaki A 2005 Acta Mater. 53 337
[16] Pérez-Sáez R B, Recarte V, Nó M L, Ruano O A and San Juan J 2000 Adv. Eng. Mater. 2 49
[17] Wang Z, Matsumoto M, Abe T, Oikawa K, Takagi T, Qiu J H and Tani J 1999 Mater. Trans. JIM 40 863
[18] Wang Z, Matsumoto M, Abe T, Oikawa K, Qiu J H, Takagi T and Tani J 1999 Mater. Trans. JIM 40 389
[19] Tian B, Chen F, Tong Y X, Li L, Zheng Y F and Liu Y 2010 J. Alloys Compd. 505 680 endfootnotesize
[1] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[2] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[3] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[6] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[7] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[8] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[9] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[10] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[11] Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永). Chin. Phys. B, 2021, 30(10): 107305.
[12] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[13] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[14] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[15] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
No Suggested Reading articles found!