CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT |
Masomeh Taghipour1, Mohammad Yousefi2, Reza Fazaeli3, Masoud Darvishganji4 |
1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran; 2 Department of Chemistry, Yadegar-e-Imam Khomeni(RAH) shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran; 3 Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran; 4 Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran |
|
|
Abstract The electronic and magnetic properties of strontium hexa-ferrite (SrFe12O19) are studied in pure state (SrFe12O19) and with dopant in the positions 2 and 3 of Fe atoms (SrGdFe11O19-I and SrGdFe11O19-Ⅱ, respectively) by utilizing a variety of the density functional theory (DFT) approaches including the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) and GGA plus Hubbard U parameter (GGA+U). The pure SrFe12O19 is a hard magnetic half-metal with an integer magnetic moment of 64.00μB, while using the GGA+U functional, the magnetic intensity increases, resulting in a magnetic semiconductor with a high integer magnetic moment of 120μB. By doping the Gd atom in the two different positions of Fe, the magnetic moment is increased to 71.68μB and 68.00μB, respectively. The magnetic moment increases and remains an integer; hence, SrGdFe11O19-Ⅱ can be very useful for application in magnetic memories. Moreover, applying the Hubbard parameter turns SrGdFe11O19-I and SrGdFe11O19-Ⅱ to magnetic semiconductors with a magnetic moment of 124μB, and the energy gap of both doped structures at spin down is found to be less than the pure case. By studying the electronic density diagram of the atoms of the crystal, it is found that the major effect to create magnetization in the pure case is due to the Fe atom. However, in the doped case, the elements Gd and Fe have the highest moment in the crystal respectively.
|
Received: 22 January 2020
Revised: 31 March 2020
Accepted manuscript online:
|
PACS:
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Corresponding Authors:
Mohammad Yousefi
E-mail: myousefi50@hotmail.com
|
Cite this article:
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT 2020 Chin. Phys. B 29 077505
|
[1] |
Goldman A 1990 Modern Ferrite Technology (New York: Van Nostrand Reinhold) p. 69
|
[2] |
Shekhawat D, Singh A K and Roy P 2019 J. Mol. Struct. 1179 787
|
[3] |
Dong S, Lin C and Meng X 2019 J. Alloys Compd. 783 779
|
[4] |
Bhattacharya P, Dhibar S, Hatui G, Mandal A, Das T and Das C K 2014 Rsc Adv. 4 17039
|
[5] |
Feng G, Zhou W, Deng H, Yang M, Qing Y, Luo F, Zhu D, Huang Z, Zhou Y and Wang C 2019 J. Mater. Sci.: Mater. Electron. 30 12382
|
[6] |
Ren A, Qing M, Zhao N, Wang M, Gao G, Yang X, Zhang Z, Hu F, Rehman M U and Abbasi Q H 2018 IEEE Access 6 29551
|
[7] |
Xie T, Hu J, Yang J, Liu C, Xu L, Wang J, Peng Y, Liu S, Yin X and Lu Y 2019 Nanomaterials 9 735
|
[8] |
Abdollahi F, Yousefi M, Hekmati M, Khajehnezhad A, Afghahi S and Salman S 2019 J. Nanostruct. 9 579
|
[9] |
Ghezelbash S, Yousefi M, Hossainisadr M and Baghshahi S 2018 IEEE Trans. Magn. 54 1
|
[10] |
Liu C, Kan X, Liu X, Feng S, Hu J, Wang W, Rehman K M U and Shezad M 2020 Ceram. Int. 46 171
|
[11] |
Liu D, Gao S, Jin R, Wang F, Chu X, Gao T and Wang Y 2019 Chin. Phys. B 28 057503
|
[12] |
Mesdaghi S, Yousefi M and Mahdavian A 2019 Mater. Chem. Phys. 236 121786
|
[13] |
Veisi S S, Yousefi M, Amini M, Shakeri A and Bagherzadeh M 2019 J. Alloys Compd. 773 1187
|
[14] |
Pullar R C 2012 Prog. Mater. Sci. 57 1191
|
[15] |
Xia A, Du D, Li P and Sun Y 2011 J. Mater. Sci.: Mater. Electron. 22 223
|
[16] |
Niazi N, Farooq O, Tuz Zahra F and Anis-ur-Rehman M 2018 Trans. Tech. Publ., September 18-19, 2018 Switzerland, p. 195
|
[17] |
Yasmin N, Abdulsatar S, Hashim M, Zahid M, Gillani S F, Kalsoom A, Ashiq M N, Inam I, Safdar M and Mirza M 2019 J. Magn. Magn. Mater. 473 464
|
[18] |
Yasmin N, Iqbal M Z, Zahid M, Gillani S F, Ashiq M N, Inam I, Abdulsatar S, Safdar M and Mirza M 2019 Ceram. Int. 45 462
|
[19] |
Chen Z, Zhu Q K, Zhang S L, Zhang K W and Jiang Y 2019 Chin. Phys. B 28 087502
|
[20] |
Feng Y Q, Jin K J, Ge C, He X, Gu L, Yang Z Z, Guo H Z, Wan Q, He M and Lu H B 2016 Chin. Phys. Lett. 33 076801
|
[21] |
Kuila M, Hussian Z and Reddy V R 2019 Thin Solid Films 691 137593
|
[22] |
Guo M C, Liu W F, Wu P, Zhang H, Xu X L, Wang S Y and Rao G H 2015 Chin. Phys. Lett. 32 066101
|
[23] |
Lei S L, Li B, Huang J, Li Q X and Yang J L 2013 Chin. Phys. Lett. 30 077502
|
[24] |
Liu X F, Luo Z J, Zhou X, Wei J M, Wang Y, Guo X, Lv B and Ding Z 2019 Chin. Phys. B 28 086105
|
[25] |
Chen X, Liu L and Shen D 2019 Chin. Phys. B 28 077106
|
[26] |
Ye Q Y, Wang W J, Deng C C, Chen S Y, Zhang X Y, Wang Y J, Huang Q Y and Huang Z G 2018 Acta Phys. Sin. 68 107502
|
[27] |
Zhao G, Zhao L, Shen L, Zou J and Qiu L 2019 Chin. Phys. B 28 077505
|
[28] |
Feng M, Shao B, Lu Y and Zuo X 2014 J. Appl. Phys. 115 17D908
|
[29] |
Luo Q, Yang H, Guo P and Zhao J F 2019 Acta Phys. Sin. 68 169101
|
[30] |
Park J, Hong Y K, Lee W, Choi B C and Choi C J 2015 IEEE Magn. Lett. 7 1
|
[31] |
Chlan V, Kouřil K, Uličná K, Štěpánková H, Töpfer J and Seifert D 2015 Phys. Rev. B 92 125125
|
[32] |
Ono K, Okabayashi J, Mizuguchi M, Oshima M, Fujimori A and Akinaga H 2002 J. Applied Physics 91 8088
|
[33] |
Wang X, Khachai H, Khenata R, Yuan H, Wang L, Wang W, Bouhemadou A, Hao L, Dai X and Guo R 2017 Sci. Reports 7 1
|
[34] |
Akinaga H, Manago T and Shirai M 2000 Jpn. J. Appl. Phys. 39 L1118
|
[35] |
Alijani V, Winterlik J, Fecher G H, Naghavi S S and Felser C 2011 Phys. Rev. B 83 184428
|
[36] |
De Groot R, Mueller F, Van Engen P and Buschow K 1983 Phys. Rev. Lett. 50 2024
|
[37] |
Galanakis I, Ostanin S, Alouani M, Dreyssé H and Wills J 2000 Phys. Rev. B 61 4093
|
[38] |
Mizuguchi M, Akinaga H, Manago T, Ono K, Oshima M, Shirai M, Yuri M, Lin H, Hsieh H and Chen C 2002 J. Appl. Phys. 91 7917
|
[39] |
Balke B, Fecher G H, Kandpal H C, Felser C, Kobayashi K, Ikenaga E, Kim J J and Ueda S 2006 Phys. Rev. B 74 104405
|
[40] |
Boochani A, Nowrozi B, Khodadadi J, Solaymani S and Jalali-Asadabadi S 2017 J. Phys. Chem. C 121 3978
|
[41] |
Candan A, Uğur G, Charifi Z, Baaziz H and Ellialtıoğlu M 2013 J. Alloys Compounds 560 215
|
[42] |
Gabor M, Petrisor Jr T, Tiusan C, Hehn M and Petrisor T 2011 Phys. Rev. B 84 134413
|
[43] |
Karthik S, Rajanikanth A, Takahashi Y, Ohkubo T and Hono K 2007 Acta Materialia 55 3867
|
[44] |
Rai D, Shankar A, Ghimire M and Thapa R 2012 Physica B 407 3689
|
[45] |
Blaha P, Schwarz K, Sorantin P and Trichey S 1990 Comput. Phys. Commun. 59 399
|
[46] |
Schwarz K 2003 J. Solid State Chem. 176 319
|
[47] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[48] |
Lyogenkaya A, Grechnev G, Kotlyar O, Panfilov A and Gnezdilov V 2016 Ukr. J. Phys. 61 523
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|