Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 036102    DOI: 10.1088/1674-1056/20/3/036102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The relation between the generalised Eshelby integral and the generalised BCS and DB modelsvspace1mm

Fan Tian-You (范天佑)a)† and Fan Lei(范蕾)b)
a School of Science, Beijing Institute of Technology, Beijing 100081, China; b School of Life Science, Beijing Institute of Technology, Beijing 100081, China
Abstract  The generalised BCS dislocation group model and the generalised DB atomic cohesive force zone model have obtained the same results on nonlinear fracture study of some one-, two- and three-dimensional quasicrystals. This work reveals some inherent connection between the two models, and finds that their common basis is the generalised Eshelby integral based on the generalised Eshelby energy--momentum tensor for quasicrystals. Further applications of the theory in solving nonlinear fracture problems of the materials are also discussed.
Keywords:  quasicrystals      crack      plasticity      generalised Eshelby integral  
Received:  29 October 2010      Revised:  25 November 2010      Accepted manuscript online: 
PACS:  61.44.Mr  
  62.20.Fe  
  62.20.Mk  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos. 10372016 and 10672022).

Cite this article: 

Fan Tian-You (范天佑) and Fan Lei(范蕾) The relation between the generalised Eshelby integral and the generalised BCS and DB modelsvspace1mm 2011 Chin. Phys. B 20 036102

[1] Li X F and Fan T Y 2002 Chin. Phys. 11 266
[2] Fan T Y, Li X F and Sun Y F 1999 Chin. Phys. 8 288
[3] Fan T Y, Trebin H R, Messeschmidt U and Mai Y W, 2004 J. Phys.: Condens. Matter 16 3229
[4] Fan T Y and Fan L 2008 Phil. Mag. 88(4) 305
[5] Eshelby J D 1956 Solid State Physics (ed. by Seits F et al) (New York: Academic Press) Vol. 3
[6] Bilby B A, Cottrell A H and Swinden K H 1963 Proc. R. Soc. A 272 304
[7] Bilby B A, Cottrell A H, Smith E and Swinden K H 1964 Proc. R. Soc. A 279 1
[8] Dugdale D S 1960 J. Mech. Phys. Solids 32 105
[9] Barenblatt G I 1962 Advances in Applied Mechanics 7 55
[10] Fan T Y 2010 Mathematical Theory of Elasticity of Quasicrystals and Its Applications (Beijing: Science Press/Heidelberg: Springer-Verlag) p 289
[11] Fan T Y and Mai Y W 2004 Appl. Mech. Rev. 57 325
[12] Zhu A Y and Fan T Y 2007 Chin. Phys. 16 1111
[13] Fan T Y, Wang X F, Li Wu and Zhu A Y 2008 Phil. Mag. 88 601
[14] Wang X F, Fan T Y and Zhu A Y 2009 Chin. Phys. B 18 709
[15] Mong X M, Tong B Y and Wu Y K 1994 Acta Metallurgica Sinica A 30 61 (in Chinese)
[16] Rice J R 1968 J. Appl. Mech. 35 379
[17] Cherepanov G P 1969 Int. J. Solids and Structures 5 77
[18] Begley G T and Landes J D 1972 Fracture Toughness, ASTM STP 514 (Philadelphia: American Society for Testing and Materials) p1
[19] Landes J D and Begley G T 1972 Fracture Toughness, ASTM STP 514 (Philadelphia: American Society for Testing and Materials) p24 endfootnotesize
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[3] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[4] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[5] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[6] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[7] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[8] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[9] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[10] Molecular dynamics simulations of dopant effectson lattice trapping of cracks in Ni matrix
Shulan Liu(刘淑兰) and Huijing Yang(杨会静). Chin. Phys. B, 2021, 30(11): 116107.
[11] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[12] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[13] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[14] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
[15] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
No Suggested Reading articles found!