Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 036103    DOI: 10.1088/1674-1056/20/3/036103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires

Yuan Hua-Jun(袁华军), Chen Ya-Qi(陈亚琦), Yu Fang(余芳), Peng Yue-Hua(彭跃华), He Xiong-Wu(何熊武), Zhao Ding(赵丁), and Tang Dong-Sheng(唐东升)
Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  This paper reports that highly purified hexagonal WO3 nanowires are synthesized by a simple hydrothermal method. The as-synthesized WO3 nanowires are investigated in detail by ultraviolet–visible–near infrared spectroscopy and electrical transport measurements under different conditions. It finds that the optical band gap and the diffuse reflection coefficient in the wavelength region above 450 nm of WO3 nanowires decrease observably upon exposure to ultraviolet light or NH3 gas. It is also found that there are electrons being trapped or released in individual WO3 nanowires when scanning bias voltage in different directions upon exposure to ultraviolet and NH3 gas. The experimental results suggest that the chromic properties might be attributed to the injection/extraction of hydrogen ions induced by ultraviolet light irradiation in air or creation/annihilation of oxygen vacancies induced by NH3 gas exposure, which serve as colour centres and trap electrons as polarons. The experimental results also suggest that the hexagonal WO3 nanowires will be a good candidate for sensing reduced gas such as NH3.
Keywords:  hydrothermal method      nanostructures      chromic property      gas adsorption  
Received:  01 February 2010      Revised:  23 September 2010      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  61.72.jd (Vacancies)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  81.07.Gf (Nanowires)  
Fund: Project supported by the Program for New Century Excellent Talents in University (Grant No. NCET-07-0278), the Hunan Provincial Natural Science Fund of China (Grant Nos. 08JJ1001 and 07JJ6009), the Major Research plan of National Natural Science Foundation of China (Grant No. 90606010) and the Program for Excellent Talents in Hunan Normal University, China(Grant No. 070623).

Cite this article: 

Yuan Hua-Jun(袁华军), Chen Ya-Qi(陈亚琦), Yu Fang(余芳), Peng Yue-Hua(彭跃华), He Xiong-Wu(何熊武), Zhao Ding(赵丁), and Tang Dong-Sheng(唐东升) Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires 2011 Chin. Phys. B 20 036103

[1] Turyan I, Krasovec U O, Orel B, Saraidorov T, Reisfeld R and Mandler D 2000 Adv. Mater. 12 330
[2] Granqvist C G 2000 Sol. Energy Mater. Sol. Cells 60 201
[3] Jelle B P and Hagen G 1999 Sol. Energy Mater. Sol. Cells 58 277
[4] Avellaneda C O and Bulhoes L O S 2003 Solid State Ionics 165 117
[5] Gavrilyuk A I 1999 Electrochim. Acta 44 3027
[6] Deb S K 1973 Philos. Mag. 27 810
[7] Granqvist C G 1993 Appl. Phys. A: Solid Surf. 57 3
[8] Gu G, Zheng B, Han W Q, Roth S and Liu J 2002 Nano Lett. 2 849
[9] Lakshmi B B, Dorhout P K and Martin C R 1997 Chem. Mater. 9 857
[10] Satishkumar B C, Govindaraj A, Nath M and Rao C N R 2000 J. Mater. Chem. 10 2115
[11] Lee K, Seo W S and Park J T 2003 J. Am. Chem. Soc. 125 3408
[12] Hudson M J, Peckett J W and Harris F 2003 J. Mater. Chem. 13 445
[13] Liu Z W, Bando Y and Tang C C 2003 Chem. Phys. Lett. 372 179
[14] Klinke C, Hannon J B, Gignac L, Reuter K and Avouris P 2005 J. Phys. Chem. B 109 17787
[15] York A P E, Sloan J and Green M L H 1999 Chem. Commun. 3 269
[16] Li X L, Liu J F and Li Y D 2003 Inorg. Chem. 42 921
[17] Lou X W and Zeng H C 2003 Inorg. Chem. 42 6169
[18] Solis J L, Hoel A, Kish L B, Sauko S and Granqvist C G 2000 J. Am. Ceram. Soc. 84 1504
[19] Chen H J, Xu N S, Deng S Z, Lu D Y, Li Z L, Zhou J and Chen J 2007 Nanotechnology 18 205701
[20] Satnkova M, Vilanova X, Llobet E, Calderer J, Bittencourt C, Pireaux J J and Correig X 2005 Sens. Actuators B 105 271
[21] Xu Y X, Tang Z L, Zhang Z T, Ji Y M and Zhou Z G 2008 Sens. Lett. 6 1
[22] Smith W, Zhang Z Y and Zhao Y P 2007 J. Vac. Sci. Technol. B 25 1875
[23] Chatten R, Chadwick A V, Rougier A and Lindan P J D 2005 J. Phys. Chem. B 109 3146
[24] Zhang M, Chen C C, Ma W H and Zhao J C 2008 Angew. Chem. Int. Ed. 47 9730
[25] Jimenez I, Centeno M A, Scotti R, Morazzoni F, Arbiol J, Cornet A and Morante J R 2004 J. Mater. Chem. 14 2412
[26] Schirmer O F, Wittwer V, Baur G and Brandt G 1977 J. Electrochem. Soc. 124 749
[27] Granqvist C G 2000 Sol. Energy Mater. Sol. Cells 60 201
[28] Georg A, Graf W, Neumann R and Wittwer V 2000 Solid State Ion. 127 319
[29] Faughnan B W, Crandall R S and Heyman P M 1975 RCA Rev. 36 177 endfootnotesize
[1] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[2] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[3] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[4] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[5] Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time
Yan-Yan Feng(冯艳艳), Xiao-Di Niu(牛潇迪), Yong-Hui Xu (徐永辉), and Wen Yang(杨文). Chin. Phys. B, 2021, 30(4): 048101.
[6] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[7] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[8] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[9] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[10] Morphological modifications of C60 crystal rods under hydrothermal conditions
Ming-Run Du(杜明润), Shi-Xin Liu(刘士鑫), Jia-Jun Dong(董家君), Ze-Peng Li(李泽朋), Ming-Chao Wang (王明超), Tong Wei(魏通), Qing-Jun Zhou(周青军), Xiong Yang(杨雄), and Peng-fei Shen(申鹏飞). Chin. Phys. B, 2020, 29(12): 128102.
[11] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[12] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[13] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[14] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
[15] Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures
Mingsong Chen(陈名松), Lulu Pan(潘璐璐), Yuanfu Lu(鲁远甫), Guangyuan Li(李光元). Chin. Phys. B, 2019, 28(7): 074208.
No Suggested Reading articles found!