Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 029701    DOI: 10.1088/1674-1056/20/2/029701
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Properties of hyperon stars rotating at Keplerian frequency

Wen De-Hua(文德华)a) and Chen Wei(陈伟)b)
a Department of Physics, South China University of Technology, Guangzhou 510641, China; b Department of Physics, Jinan University, Guangzhou 510632, China
Abstract  The structure and properties of a Keplerian rotating hyperon star with an equation of state (EOS) investigated using the relativistic $\sigma$-$\omega$-$\rho$ model are examined by employing an accurate numerical scheme. It is shown that there is a clear rotating effect on the structure and properties, and that hyperon star matter cannot support a star with a mass larger than 1.9 M$\odot$, even a star rotating at the fastest allowed frequency. The constraints of the two known fastest rotating frequencies (716 Hz and 1122 Hz) on the mass and radius of a hyperon star are also explored. Furthermore, our results indicate that the imprint of the rapid rotation of a hyperon star on the moment of inertia is clear; the backward equatorial redshift, the forward equatorial redshift and the polar redshift can be distinguished clearly, the forward equatorial redshift is always negative; and its figuration is far from a spherical symmetric shape.
Keywords:  equation of state      hyperon star      moment of inertia      redshift  
Received:  08 October 2009      Revised:  28 September 2010      Accepted manuscript online: 
PACS:  97.10.Kc (Stellar rotation)  
  26.60.+c  
  97.60.Jd (Neutron stars)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10947023), and the Fundamental Research Funds for the Central University, China (Grant No. 2009ZM0193).

Cite this article: 

Wen De-Hua(文德华) and Chen Wei(陈伟) Properties of hyperon stars rotating at Keplerian frequency 2011 Chin. Phys. B 20 029701

[1] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[2] Wen D H, Li B A and Chen L W 2009 Phys. Rev. Lett. 103 211102
[3] Lattimer J M and Prakash M 2007 Phys. Rep. 442 109
[4] Lattimer J M and Prakash M 2004 Science 304 536
[5] Hessels J W T, Ransom S M, Stairs I H, et al. 2006 Science 311 1901
[6] Thorsett S E and Chakrabarty D 1999 ApJ 512 288
[7] Kaaret P, Prieskorn J, In't Z and J J M, et al. 2007 ApJ 657 L97
[8] Hartle J B 1967 ApJ 150 1005
[9] Hartle J B and Thorne K S 1968 ApJ 153 807
[10] Butterworth E M and Ipser J R 1975 ApJL 200 103
[11] Friedman J L, Ipser J R and Parker L 1986 ApJ 304 115
[12] Komatsu H, Eriguchi Y and Hachisu I 1989 MNRAS 237 355
[13] Cook G B, Shapiro S L and Teukolsky S A 1994 ApJ 422 273
[14] Stergioulas N and Friedman J L 1995 ApJ 444 306
[15] Krastev P G, Li B A and Worley A 2008 ApJ 676 1170
[16] Wen D H 2010 Chin. Phys. Lett. 27 010401
[17] G"uver T, "Ozel F, Lavers A C and Wroblewski P Astro-ph/0811.3979v1
[18] van der Meer A, Kaper L, van Kerkwijk M H, Heemskerk M H M and van den Heuvel E P J 2007 Astron. Astrophys. 473 523
[19] Galloway D K, Muno M P, Hartman J M, Psaltis D and Chakrabarty D Astro-ph/0608259v2
[20] Glendenning N K 1989 Nucl. Phys. A 493 521
[21] Glendenning N K and Moszkowski S A 1991 Phys. Rev. Lett. 67 2414
[22] Burgio G, Li A, Mi A J and Zuo W 2007 Chin. Phys. 16 1934
[23] Li A, Mi A and Zuo W 2007 Chin. Phys. 16 3290
[24] Glendenning N K 2001 Phys. Rev. C 64 025801
[25] Shen H 2002 Phys. Rev. C 65 035802
[26] Panda P K, Menezes D P and Providencia C 2004 Phys. Rev. C 69 025207
[27] Lackey B D, Nayyar M and Owen B J 2006 Phys. Rev. D 73 024021
[28] Yue P, Yang F and Shen H 2009 Phys. Rev. C 79 025803
[29] Chen W, Ai B Q and Liu L G 2001 Commun. Theor. Phys. 36 183
[30] Pethick C J, Ravenhall D G and Lorenz C P 1995 Nucl. Phys. A 584 675
[31] Haensel P and Pichon B 1994 Astron. Astrophys. 283 313
[32] Akmal A, Pandharipande V R and Ravenhall D G 1998 Phys. Rev. C 58 1804
[33] Tolman R C 1939 Phys. Rev. 55 364
[34] Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374
[35] Nozawa T, Stergioulas N, Gourgoulhon E and Eriguchi Y 1998 Astron. Astrophys. 132 431
[36] Butterworth E M and Ipser J R 1976 ApJ 204 200
[37] Morrison I A, Baumgarte T W, Shapiro S L and Pandharipande V R 2004 ApJL 617 135
[38] Lattimer J M and Schutz B F 2005 ApJ 629 979
[39] Haensel P, Zdunik J L, Bejger M and Lattimer J M Astro-ph/0901.1268V1
[40] Cottam J, Paerels F and Mendez M 2002 Nature 420 51
[41] Krastev P G, Li B A and Worley A 2008 Phys. Lett. B 668 1
[42] Cook G B, Shapiro S L and Teukolsky S A 1994 ApJ 424 823
[43] Ji P Y and Zhu J Y 2008 Chin. Phys. B 17 356
[1] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[2] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[3] Equation of state of LiCoO2 under 30 GPa pressure
Yong-Qing Hu(户永清), Lun Xiong(熊伦), Xing-Quan Liu(刘兴泉), Hong-Yuan Zhao(赵红远), Guang-Tao Liu(刘广涛), Li-Gang Bai(白利刚), Wei-Ran Cui(崔巍然), Yu Gong(宫宇), Xiao-Dong Li(李晓东). Chin. Phys. B, 2019, 28(1): 016402.
[4] Unconventional lattice dynamics in few-layer h-BN and indium iodide crystals
Gan Hu(胡干), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Bao-Juan Dong(董宝娟), Ji-Zhang Wang(王吉章), Bo Zhao(赵波), Sajjad Ali(阿里·萨贾德), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(8): 086301.
[5] Spectral redshift of high-order harmonics by adding a weak pulse in the falling part of the trapezoidal laser pulse
Xue-Fei Pan(潘雪飞), Jun Zhang(张军), Shuai Ben(贲帅), Tong-Tong Xu(徐彤彤), Xue-Shen Liu(刘学深). Chin. Phys. B, 2018, 27(2): 024206.
[6] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[7] High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite
Duan Kang(康端), Xiang Wu(巫翔), Guan Yuan(袁冠), Sheng-Xuan Huang(黄圣轩), Jing-Jing Niu(牛菁菁), Jing Gao(高静), Shan Qin(秦善). Chin. Phys. B, 2018, 27(1): 017402.
[8] Pressure-induced phase transition of B-type Y2O3
Qian Zhang(张倩), Xiang Wu(巫翔), Shan Qin(秦善). Chin. Phys. B, 2017, 26(9): 090703.
[9] Equation of state for warm dense lithium: A first principles investigation
Feiyun Long(龙飞沄), Haitao Liu(刘海涛), Dafang Li(李大芳), Jun Yan(颜君). Chin. Phys. B, 2017, 26(6): 065101.
[10] Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression
Zhao Zhang(张钊), Hang Cui(崔航), Da-Peng Yang(杨大鹏), Jian Zhang(张剑), Shun-Xi Tang(汤顺熙), Si Wu(吴思), Qi-Liang Cui(崔啟良). Chin. Phys. B, 2017, 26(10): 106402.
[11] Measurement of transient Raman spectrum on gas-gun loading platform and its application in liquid silane
Yi-Gao Wang(汪贻高), Fu-Sheng Liu(刘福生), Qi-Jun Liu(刘其军), Wen-Peng Wang(王文鹏), Ming-Jian Zhang(张明建), Feng Xi(习锋), Ling-Cang Cai(蔡灵仓), Ning-Chao Zhang(张宁超). Chin. Phys. B, 2017, 26(10): 103301.
[12] Unreacted equation of states of typical energetic materials under static compression: A review
Zhaoyang Zheng(郑朝阳), Jijun Zhao(赵纪军). Chin. Phys. B, 2016, 25(7): 076202.
[13] Structure phase transformation and equation of state of cerium metal under pressures up to 51 GPa
Ce Ma(马策), Zuo-Yong Dou(窦作勇), Hong-Yang Zhu(祝洪洋), Guang-Yan Fu(付广艳), Xiao Tan(谈笑), Bin Bai(白彬), Peng-Cheng Zhang(张鹏程), Qi-Liang Cui(崔啟良). Chin. Phys. B, 2016, 25(4): 046401.
[14] γ-and α-Ce phase diagram: First-principle calculation
Lin Zhang(张林), Ying-Hua Li(李英华), Xue-Mei Li(李雪梅), Zu-Gen Zhang(张祖根), Xiang-Ping Ye(叶想平), Ling-Cang Cai(蔡灵仓). Chin. Phys. B, 2016, 25(3): 033102.
[15] A modified equation of state for Xe at high pressures by molecular dynamics simulation
Xiao Hong-Xing (肖红星), Long Chong-Sheng (龙冲生). Chin. Phys. B, 2014, 23(2): 020502.
No Suggested Reading articles found!