Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017402    DOI: 10.1088/1674-1056/27/1/017402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite

Duan Kang(康端)1, Xiang Wu(巫翔)2, Guan Yuan(袁冠)1, Sheng-Xuan Huang(黄圣轩)1, Jing-Jing Niu(牛菁菁)1, Jing Gao(高静)1, Shan Qin(秦善)1
1 Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China;
2 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
Abstract  PbAl3(PO4)2(OH,H2O)6, an important environmental mineral, is in-situ studied by synchrotron x-ray diffraction (XRD) and Raman scattering combined with diamond anvil cells (DACs) at pressures up to~11.0 GPa and room temperature. The XRD results indicate that plumbogummite does not undergo a phase transition between 0 GPa and 10.9 GPa. Moreover, the c axis is more compressible than the a axis, revealing its anisotropic behavior. The pressure-volume data are fitted to the third-order Birch-Murnaghan equation of state to yield the plumbogummite bulk modulus K0 of 68(1) GPa and K'0 of 6.1. The[PO4]3- and[HPO4]2- Raman vibrational modes exhibit scale nearly linearly as a function of pressure. The[PO4]3- stretching modes are generally more sensitive to pressure than the bending modes. The Grüneisen parameters range from -0.07 to 1.19, with an arithmetic mean of approximately 0.39.
Keywords:  plumbogummite      equation of state      Grüneisen parameter      diamond anvil cell  
Received:  18 April 2017      Revised:  18 October 2017      Accepted manuscript online: 
PACS:  74.25.nd (Raman and optical spectroscopy)  
  74.25.Ld (Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41473056 and 41472037).
Corresponding Authors:  Xiang Wu     E-mail:  wuxiang@cug.edu.cn

Cite this article: 

Duan Kang(康端), Xiang Wu(巫翔), Guan Yuan(袁冠), Sheng-Xuan Huang(黄圣轩), Jing-Jing Niu(牛菁菁), Jing Gao(高静), Shan Qin(秦善) High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite 2018 Chin. Phys. B 27 017402

[1] Rattray K J, Taylor M R, Bevan D J M and Pring A 1996 Mineral. Mag. 60 779
[2] Dill H G 2001 Earth-Sci. Rev. 53 35
[3] Morin G 2001 Am. Mineral. 86 92
[4] Grey I E, Shanks F L, Wilson N C, Mumme W G and Birch W D 2011 Mineral. Mag. 75 145
[5] Schwab R G, Götz C, Herold H and Pinto de Oliveira N 1991 Neues Jahrbuch für Mineralogie Monatshefte 97
[6] Eighmy T T, Crannell B S, Butler L G, Cartledge F K, Emery E F, Oblas D, Krzanowski J E, Eusden J D, Shaw E L and Francis C A 1997 Environ. Sci. Technol. 31 3330
[7] Kolitsch U and Pring A 2001 J. Miner. Petrol. Sci. 96 67
[8] Kolitsch U, Tiekink E R T, Slade P G, Taylor M R and Pring A 1999 Eur. J. Mineral. 11 513
[9] Jiang J L, Wang Y B, Wang Q, Huang H, Wei Z Q and Hao J Y 2016 Chin. Phys. B 25 048101
[10] Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
[11] Geng A H, Cao L H, Ma Y M, Cui Q L and Wan C M 2016 Chin. Phys. Lett. 33 097401
[12] Cheng H, Li Y C, Li G and Li X D 2016 Chin. Phys. Lett. 33 096104
[13] Yang S W, Peng F, Li W T, Hu Q W, Yan X Z, Lei L, Li X D and He D W 2016 Chin. Phys. B 25 076101
[14] Zhang J, Wang D, Zhang D M, Zhang Q L, Wan S M, Sun D L, Yin S T 2013 Acta Phys. Sin. 62 097802 (in Chinese)
[15] Zhou H L, Gu Q T, Zhang Q H, Liu B A, Zhu L L, Zhang L S, Zhang F, Xu X G, Wang Z P, Sun X and Zhao X 2015 Acta Phys. Sin. 64 197801 (in Chinese)
[16] Zhai S, Liu A, Xue W and Song Y 2011 Solid State Commun. 151 276
[17] Maczka M, Paraguassu W, Filho A G S, Freire P T C, Majchrowski A, Filho J M and Hanuza J 2008 Phys. Rev. B 78 064116
[18] Zhai S, Xue W, Yamazaki D, Shan S, Ito E, Tomioka N, Shimojuku A and Funakoshi K I 2011 Phys. Chem. Miner. 38 357
[19] Qin F, Wu X, Zhai S M, Qin S, Yang K, Chen D L and Li Y C 2014 Phase Transit. 87 1255
[20] Frost R L, Palmer S J, Xi Y, Čejka J, Sejkora J and Plášil J 2013 Spectrochim. Acta. A 103 431
[21] Frost R L, Xi Y, Palmer S J and Pogson R E 2011 Spectrochim. Acta. A 83 106
[22] Frost R L, Xi Y, Scholz R and Tazava E 2013 J. Mol. Struct. 1037 148
[23] Frost R L, Scholz R, López A, Lana C and Xi Y 2014 Spectrochim. Acta. A 126 164
[24] Frost R L and Palmer S J 2011 Spectrochim. Acta. A 78 1250
[25] Frost R L, Xi Y, Scholz R, Belotti F M and Beganovic M 2013 Spectrochim. Acta A 110 7
[26] Frost R L, Xi Y, Scholz R, Belotti F M and Filho M C 2013 Spectr. Lett. 46 415
[27] Förtsch E B 1967 Mineral. Mag. 36 530
[28] Bain D C 1970 Mineral. Mag. 37 934
[29] Mills S J, Kampf A R, Raudsepp M and Christy A G 2009 Mineral. Mag. 73 837
[30] Mao H, Xu J and Bell P 1986 J. Geophys. Res. 91 4673
[31] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Pressure Res. 14 235
[32] Toby B H 2001 J. Appl. Crystallogr. 34 210
[33] Birch F 1947 Phys. Rev. 71 809
[34] Malavi P S, Karmakar S, Karmakar D, Mishra A K, Bhatt H, Patel N N and Sharma S M 2013 J. Phys.: Condens. Mat. 25 045402
[35] Kugel G E, Bréhat F, Wyncke B, Fontana M D, Marnier G, Carabatos-Nedelec C and Mangin J 1988 J. Phys. C: Solid State Phys. 21 5565
[36] Frost R L, Xi Y, Beganovic M, Belotti F M and Scholz R 2013 Spectrochim. Acta A 107 241
[37] Breitinger D K, Brehm G, Mohr J, Colognesi D, Parker S F, Stolle A, Pimpl T H and Schwab R G 2006 J. Raman Spectrosc. 37 208
[38] Frost R L, Xi Y, Scholz R, López A, Lima R M F and Ferreira C M 2013 Vib. Spectrosc. 67 14
[39] Frost R L, Xi Y, Palmer S J and Pogson R E 2012 Spectrochim. Acta A 94 1
[40] Gao J, Wu X, Qin S and Li Y C 2016 High Pressure Res. 36 1
[41] Zhai S, Wu X and Ito E 2010 J. Raman Spectrosc. 41 1011
[42] Hofmeister A M and Mao H K 2002 Proc. Nati. Acad. Sci. U.S.A. 99 559
[43] Williams Q and Knittle E 1996 J. Phys. Chem. Solids 57 417
[1] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[2] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[3] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[4] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[5] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[6] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[7] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[8] Structural stability and vibrational characteristics of CaB6 under high pressure
Mingkun Liu(刘明坤), Can Tian(田灿), Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(6): 068101.
[9] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
[10] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[11] Equation of state of LiCoO2 under 30 GPa pressure
Yong-Qing Hu(户永清), Lun Xiong(熊伦), Xing-Quan Liu(刘兴泉), Hong-Yuan Zhao(赵红远), Guang-Tao Liu(刘广涛), Li-Gang Bai(白利刚), Wei-Ran Cui(崔巍然), Yu Gong(宫宇), Xiao-Dong Li(李晓东). Chin. Phys. B, 2019, 28(1): 016402.
[12] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[13] Unusual softening behavior of yield strength in niobium at high pressures
Qiu-Min Jing(敬秋民), Qiang He(何强), Yi Zhang(张毅), Shou-Rui Li(李守瑞), Lei Liu(柳雷), Qi-Yue Hou(侯琪玥), Hua-Yun Geng(耿华运), Yan Bi(毕延), Yu-Ying Yu(俞宇颖), Qiang Wu(吴强). Chin. Phys. B, 2018, 27(10): 106201.
[14] Pressure-induced phase transition of B-type Y2O3
Qian Zhang(张倩), Xiang Wu(巫翔), Shan Qin(秦善). Chin. Phys. B, 2017, 26(9): 090703.
[15] Equation of state for warm dense lithium: A first principles investigation
Feiyun Long(龙飞沄), Haitao Liu(刘海涛), Dafang Li(李大芳), Jun Yan(颜君). Chin. Phys. B, 2017, 26(6): 065101.
No Suggested Reading articles found!