CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite |
Duan Kang(康端)1, Xiang Wu(巫翔)2, Guan Yuan(袁冠)1, Sheng-Xuan Huang(黄圣轩)1, Jing-Jing Niu(牛菁菁)1, Jing Gao(高静)1, Shan Qin(秦善)1 |
1 Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China |
|
|
Abstract PbAl3(PO4)2(OH,H2O)6, an important environmental mineral, is in-situ studied by synchrotron x-ray diffraction (XRD) and Raman scattering combined with diamond anvil cells (DACs) at pressures up to~11.0 GPa and room temperature. The XRD results indicate that plumbogummite does not undergo a phase transition between 0 GPa and 10.9 GPa. Moreover, the c axis is more compressible than the a axis, revealing its anisotropic behavior. The pressure-volume data are fitted to the third-order Birch-Murnaghan equation of state to yield the plumbogummite bulk modulus K0 of 68(1) GPa and K'0 of 6.1. The[PO4]3- and[HPO4]2- Raman vibrational modes exhibit scale nearly linearly as a function of pressure. The[PO4]3- stretching modes are generally more sensitive to pressure than the bending modes. The Grüneisen parameters range from -0.07 to 1.19, with an arithmetic mean of approximately 0.39.
|
Received: 18 April 2017
Revised: 18 October 2017
Accepted manuscript online:
|
PACS:
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
74.25.Ld
|
(Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41473056 and 41472037). |
Corresponding Authors:
Xiang Wu
E-mail: wuxiang@cug.edu.cn
|
Cite this article:
Duan Kang(康端), Xiang Wu(巫翔), Guan Yuan(袁冠), Sheng-Xuan Huang(黄圣轩), Jing-Jing Niu(牛菁菁), Jing Gao(高静), Shan Qin(秦善) High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite 2018 Chin. Phys. B 27 017402
|
[1] |
Rattray K J, Taylor M R, Bevan D J M and Pring A 1996 Mineral. Mag. 60 779
|
[2] |
Dill H G 2001 Earth-Sci. Rev. 53 35
|
[3] |
Morin G 2001 Am. Mineral. 86 92
|
[4] |
Grey I E, Shanks F L, Wilson N C, Mumme W G and Birch W D 2011 Mineral. Mag. 75 145
|
[5] |
Schwab R G, Götz C, Herold H and Pinto de Oliveira N 1991 Neues Jahrbuch für Mineralogie Monatshefte 97
|
[6] |
Eighmy T T, Crannell B S, Butler L G, Cartledge F K, Emery E F, Oblas D, Krzanowski J E, Eusden J D, Shaw E L and Francis C A 1997 Environ. Sci. Technol. 31 3330
|
[7] |
Kolitsch U and Pring A 2001 J. Miner. Petrol. Sci. 96 67
|
[8] |
Kolitsch U, Tiekink E R T, Slade P G, Taylor M R and Pring A 1999 Eur. J. Mineral. 11 513
|
[9] |
Jiang J L, Wang Y B, Wang Q, Huang H, Wei Z Q and Hao J Y 2016 Chin. Phys. B 25 048101
|
[10] |
Liang H, Peng F, Fan C, Zhang Q, Liu J and Guan S X 2017 Chin. Phys. B 26 053101
|
[11] |
Geng A H, Cao L H, Ma Y M, Cui Q L and Wan C M 2016 Chin. Phys. Lett. 33 097401
|
[12] |
Cheng H, Li Y C, Li G and Li X D 2016 Chin. Phys. Lett. 33 096104
|
[13] |
Yang S W, Peng F, Li W T, Hu Q W, Yan X Z, Lei L, Li X D and He D W 2016 Chin. Phys. B 25 076101
|
[14] |
Zhang J, Wang D, Zhang D M, Zhang Q L, Wan S M, Sun D L, Yin S T 2013 Acta Phys. Sin. 62 097802 (in Chinese)
|
[15] |
Zhou H L, Gu Q T, Zhang Q H, Liu B A, Zhu L L, Zhang L S, Zhang F, Xu X G, Wang Z P, Sun X and Zhao X 2015 Acta Phys. Sin. 64 197801 (in Chinese)
|
[16] |
Zhai S, Liu A, Xue W and Song Y 2011 Solid State Commun. 151 276
|
[17] |
Maczka M, Paraguassu W, Filho A G S, Freire P T C, Majchrowski A, Filho J M and Hanuza J 2008 Phys. Rev. B 78 064116
|
[18] |
Zhai S, Xue W, Yamazaki D, Shan S, Ito E, Tomioka N, Shimojuku A and Funakoshi K I 2011 Phys. Chem. Miner. 38 357
|
[19] |
Qin F, Wu X, Zhai S M, Qin S, Yang K, Chen D L and Li Y C 2014 Phase Transit. 87 1255
|
[20] |
Frost R L, Palmer S J, Xi Y, Čejka J, Sejkora J and Plášil J 2013 Spectrochim. Acta. A 103 431
|
[21] |
Frost R L, Xi Y, Palmer S J and Pogson R E 2011 Spectrochim. Acta. A 83 106
|
[22] |
Frost R L, Xi Y, Scholz R and Tazava E 2013 J. Mol. Struct. 1037 148
|
[23] |
Frost R L, Scholz R, López A, Lana C and Xi Y 2014 Spectrochim. Acta. A 126 164
|
[24] |
Frost R L and Palmer S J 2011 Spectrochim. Acta. A 78 1250
|
[25] |
Frost R L, Xi Y, Scholz R, Belotti F M and Beganovic M 2013 Spectrochim. Acta A 110 7
|
[26] |
Frost R L, Xi Y, Scholz R, Belotti F M and Filho M C 2013 Spectr. Lett. 46 415
|
[27] |
Förtsch E B 1967 Mineral. Mag. 36 530
|
[28] |
Bain D C 1970 Mineral. Mag. 37 934
|
[29] |
Mills S J, Kampf A R, Raudsepp M and Christy A G 2009 Mineral. Mag. 73 837
|
[30] |
Mao H, Xu J and Bell P 1986 J. Geophys. Res. 91 4673
|
[31] |
Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Pressure Res. 14 235
|
[32] |
Toby B H 2001 J. Appl. Crystallogr. 34 210
|
[33] |
Birch F 1947 Phys. Rev. 71 809
|
[34] |
Malavi P S, Karmakar S, Karmakar D, Mishra A K, Bhatt H, Patel N N and Sharma S M 2013 J. Phys.: Condens. Mat. 25 045402
|
[35] |
Kugel G E, Bréhat F, Wyncke B, Fontana M D, Marnier G, Carabatos-Nedelec C and Mangin J 1988 J. Phys. C: Solid State Phys. 21 5565
|
[36] |
Frost R L, Xi Y, Beganovic M, Belotti F M and Scholz R 2013 Spectrochim. Acta A 107 241
|
[37] |
Breitinger D K, Brehm G, Mohr J, Colognesi D, Parker S F, Stolle A, Pimpl T H and Schwab R G 2006 J. Raman Spectrosc. 37 208
|
[38] |
Frost R L, Xi Y, Scholz R, López A, Lima R M F and Ferreira C M 2013 Vib. Spectrosc. 67 14
|
[39] |
Frost R L, Xi Y, Palmer S J and Pogson R E 2012 Spectrochim. Acta A 94 1
|
[40] |
Gao J, Wu X, Qin S and Li Y C 2016 High Pressure Res. 36 1
|
[41] |
Zhai S, Wu X and Ito E 2010 J. Raman Spectrosc. 41 1011
|
[42] |
Hofmeister A M and Mao H K 2002 Proc. Nati. Acad. Sci. U.S.A. 99 559
|
[43] |
Williams Q and Knittle E 1996 J. Phys. Chem. Solids 57 417
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|