Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 029201    DOI: 10.1088/1674-1056/20/2/029201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Refractivity estimations from an angle-of-arrival spectrum

Zhao Xiao-Feng(赵小峰) and Huang Si-Xun(黄思训)
Institute of Meteorology, PLA University of Science & Technology, Nanjing 211101, China
Abstract  This paper addresses the probability of atmospheric refractivity estimation by using field measurements at an array of radio receivers in terms of angle-of-arrival spectrum. Angle-of-arrival spectrum information is simulated by the ray optics model and refractivity is expressed in the presence of an ideal tri-linear profile. The estimation of the refractivity is organized as an optimization problem and a genetic algorithm is used to search for the optimal solution from various trial refractivity profiles. Theoretical analysis demonstrates the feasibility of this method to retrieve the refractivity parameters. Simulation results indicate that this approach has a fair anti-noise ability and its accuracy performance is mainly dependent on the antenna aperture size and its positions.
Keywords:  refractivity estimation      angle-of-arrival spectrum      ray optics model      genetic algorithm  
Received:  14 August 2010      Revised:  13 September 2010      Accepted manuscript online: 
PACS:  92.60.Ta (Electromagnetic wave propagation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  02.30.Zz (Inverse problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 40775023).

Cite this article: 

Zhao Xiao-Feng(赵小峰) and Huang Si-Xun(黄思训) Refractivity estimations from an angle-of-arrival spectrum 2011 Chin. Phys. B 20 029201

[1] Yan H J, Fu Y and Hong Z J 2006 Introduction to Modern Atmospheric Refraction (Shanghai: Shanghai Science and Educational Press) (in Chinese)
[2] Halvey R A 1983 Proc. IEEE Part F 130 643
[3] Richter J H 1969 Radio Sci. 4 1261
[4] Rogers L T 2000 Radio Sci. 35 955
[5] Gerstoft P, Rogers L T, Krolik J L and Hodgkiss W S 2003 Radio Sci. 38 8053
[6] Barrios A E 2004 Radio Sci. 39 RS6013 doi:10.1029/2003RS002930
[7] Weckwerth T M, Petter C R, Fabry F, Park S, Lemone M A and Wilson J W 2005 J. Appl. Meteor. 44 285
[8] Yardim C, Gerstoft P and Hodgkiss W S 2006 IEEE Trans. Antennas Propag. 54 1318
[9] Vasudevan S, Anderson R H, Kraut S, Gerstoft P, Rogers L T and Krolik J 2007 Radio Sci. 42 RS2014 doi:10.1029/2005RS003423
[10] Wang B, Wu Z S, Zhao Z W and Wang H G 2009 Prog. Electromagn. Res. M 9 79
[11] Huang S X, Zhao X F and Sheng Z 2009 Chin. Phys. B 18 5084
[12] Zhao X F, Huang S X and Sheng Z 2010 Chin. Phys. B 19 049201
[13] Tabrikian J and Krolik J L 1999 IEEE Trans. Antennas Propag. 47 1727
[14] Gerstoft P, Gingras D F, Rogers L T and Hodgkiss W S 2000 IEEE Trans. Antennas Propag. 48 345
[15] Webster A R and Merritt T S 1990 IEEE Trans. Commun. 38 25
[16] Akbarpour R and Webster A R 2005 IEEE Trans. Antennas Propag. 53 3785
[17] Rogers L T 1996 IEEE Trans. Antennas Propag. 44 460
[18] Barrios A E 2003 Considerations in the Development of the Advanced Propagation Model (APM) for U.S. Navy Applications AD-A 445 237
[19] Valtr P and Pechac P 2005 Radioengieering 14 98
[20] Yang G, Reinstein L E, Pai S, Xu Z and Carroll D L 1998 Medical Physics 25 2308
[21] Dockery G D 1998 Johns Hopkins APL Technical Digest 19 283 endfootnotesize
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[4] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[5] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[6] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[7] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[8] Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(8): 084202.
[9] Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(10): 104210.
[10] Broadband achromatic phase retarder based on metal-multilayer dielectric grating
Na Li(李娜), Wei-Jin Kong(孔伟金), Feng Xia(夏峰), Mao-Jin Yun(云茂金). Chin. Phys. B, 2018, 27(5): 054202.
[11] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[12] Optimization of multi-color laser waveform for high-order harmonic generation
Cheng Jin(金成), C D Lin(林启东). Chin. Phys. B, 2016, 25(9): 094213.
[13] An improved genetic algorithm with dynamic topology
Kai-Quan Cai(蔡开泉), Yan-Wu Tang(唐焱武), Xue-Jun Zhang(张学军), Xiang-Min Guan(管祥民). Chin. Phys. B, 2016, 25(12): 128904.
[14] Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations
Jian Zhong(钟剑), Gang Dong(董钢), Yimei Sun(孙一妹), Zhaoyang Zhang(张钊扬), Yuqin Wu(吴玉琴). Chin. Phys. B, 2016, 25(11): 110502.
[15] Design of ultra wideband microwave absorber effectual for objects of arbitrary shape
Gong Yuan-Xun (宫元勋), Zhou Zhong-Xiang (周忠祥), Jiang Jian-Tang (姜建堂), Zhao Hong-Jie (赵宏杰). Chin. Phys. B, 2015, 24(12): 124101.
No Suggested Reading articles found!