CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural transition of FeSe under high pressure |
Li Wei(李炜)a)†, Chen Jun-Fang(陈俊芳)a), He Qin-Yu(何琴玉)a), Wang Teng(王腾)b), and Pan Zhong-Liang(潘中良)a) |
a Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; b School of Computer, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The density functional calculations of the energy band structure and density of state for the tetragonal PbO-type phase $\alpha$-FeSe and hexagonal NiAs-type phase $\beta$-FeSe are reported in this paper. The structural phase transition from tetragonal to hexagonal FeSe under high pressure is investigated, it is found that the calculated transition pressure for the $\alpha$ → $\beta$ phase transformation is 8.5 GPa. Some fluctuations in the transition pressure maybe occurred by different external factors such as temperature and stress condition. There is about 17% volume collapse accompanying the $\alpha$ → $\beta$ phase transformation.
|
Received: 25 July 2010
Revised: 25 September 2010
Accepted manuscript online:
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
81.30.-t
|
(Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61072028), the Key Science and Technology Program of Guangdong Province of China (Grant No. 2010B010800028), the Natural Science Foundation of Guangdong Province of China (Grant No. 10151063101000048). |
Cite this article:
Li Wei(李炜), Chen Jun-Fang(陈俊芳), He Qin-Yu(何琴玉), Wang Teng(王腾), and Pan Zhong-Liang(潘中良) Structural transition of FeSe under high pressure 2011 Chin. Phys. B 20 026101
|
[1] |
Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
|
[2] |
Lee K W, Pardo V and Pickett W E 2008 Phys. Rev. B 78 174502
|
[3] |
Subedi A, Zhang L J, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
|
[4] |
Wu X J, Zhang Z Z, Zhang J Y, Ju Z G, Li B H, Li B S, Shan C X, Zhao D X, Yao B and Shen D Z 2008 Thin Solid Films 516 6116
|
[5] |
Thanikaikarasan S, Mahalingam T, Sundaram K, Kathalingam A, Kim Y D and Kim T 2009 Vacuum 83 1066
|
[6] |
Yoshida R, Wakita T, Okazaki H, Mizuguchi Y, Tsuda S, Takano Y, Takeya H, Hirata K, Muro T, Okawa M, Ishizaka K, Shin S, Harima H, Hirai M, Muraoka Y and Yokoya T 2009 J. Phys. Soc. Jpn. 78 034708
|
[7] |
Masaki S, Kotegawa1 H, Hara Y, Tou H, Murata K, Mizuguchi Y and Takano Y 2009 J. Phys. Soc. Jpn. 78 063704
|
[8] |
Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y 2008 Appl. Phys. Lett. 93 152505
|
[9] |
Pomjakushina E, Conder K, Pomjakushin V, Bendele M and Khasanov R 2009 Phys. Rev. B 80 024517
|
[10] |
Imai T, Ahilan K, Ning F L, McQueen T M and Cava R J 2009 Phys. Rev. Lett. 102 177005
|
[11] |
Takeya H, Kasahara S, Hirata K, Mochiku T, Sato A and Takano Y 2009 Physica C: Superconductivity, in press, corrected proof, available online 27 October 2009
|
[12] |
Khasanov R, Bendele M, Amato A, Conder K, Keller H, Klauss H H, Luetkens H and Pomjakushina E 2010 Phys. Rev. Lett. 104 087004
|
[13] |
Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A and Khasanov R 2010 Phys. Rev. Lett. 104 087003
|
[14] |
Miyake T, Nakamura K, Arita R and Imada M 2010 J. Phys. Soc. Jpn. 79 044705
|
[15] |
Braithwaite D, Salce B, Lapertot G, Bourdarot F, Marin C, Aoki D and Hanfland M 2009 J. Phys.: Condens. Matter 21 232202
|
[16] |
Margadonna S, Takabayashi, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M and Prassides K 2009 Phys. Rev. B 80 064506
|
[17] |
Huang T W, Lin C M, Sheu H S, Hung T L, Yeh K W, Hsu P C, Huang Y L, Hsu F C and Wua M K 2009 Physica C: Superconductivity, in press, corrected proof, available online 15 November 2009
|
[18] |
Millican J N, Phelan D, Thomas E L, Leo J B and Carpenter E 2009 Solid State Commun. 149 707
|
[19] |
Medvedev S, McQueen T M, Troyan I, Palasyuk T, Eremets M, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nature Mater. 8 630
|
[20] |
Okamoto H 1991 J. Phase Equilib. 12 383
|
[21] |
Hohenberg P and Kohn W 1964 Phys. Rev. B 136 384
|
[22] |
Shi L B, Li M B, Ren J Y, Wang L J and Xu C Y 2009 Chin. Phys. B 18 726
|
[23] |
Ding Y C, He H L, Pan H, Shen Y B, Xu M and Zhu W J 2007 Acta Phys. Sin. 56 107 (in Chinese)
|
[24] |
Chen K, Ding S F, Fan G H and Zhang Y 2008 Acta Phys. Sin. 57 3933 (in Chinese) endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|