Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024211    DOI: 10.1088/1674-1056/20/2/024211
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Fast generation of controllable equal-intensity four beams based on isosceles triangle multilevel phase grating realized by liquid crystal spatial light modulator

Liu Xiang(刘翔), Zhang Jian(张健), Wu Li-Ying(吴丽莹), and Gan Yu(甘雨) 
Institute of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, P.O. Box 3017, No. 2 Yikuang Street, Nangang District, Harbin 150080, China
Abstract  Liquid crystal spatial light modulator (LCSLM) realizing equal-intensity multiple beams often has some features, i.e., phase valley between two adjacent pixels, flyback region when phase decreases immediately from 2$\pi$ to 0, and inevitable backplane curvature, which are different from those of most conventional diffractive optical elements (DOEs), such as static DOEs. For optimal intensity uniformity, equal-intensity multi-beam generation must be considered for these artifacts. We present a tunable-grating method in which the intensity uniformity can be improved by considering the LCSLM artifacts. For instance, tuning phase modulation depth of the grating, called isosceles triangle multilevel phase grating (ITMPG), can be used not only to improve the intensity uniformity, but also to fast steer four beams with narrow beamwidths, determined by the same effective aperture of ITMPG. Improved intensity uniformity and high relative diffraction efficiency are demonstrated through experiments with phase-only LCSLM.
Keywords:  liquid crystal spatial light modulator      phase grating      splitter  
Received:  09 August 2010      Revised:  18 August 2010      Accepted manuscript online: 
PACS:  42.70.Df (Liquid crystals)  
  42.79.Hp (Optical processors, correlators, and modulators)  
  42.79.Dj (Gratings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60878048) and the China Postdoctoral Science Foundation (Grant No. 20080440898).

Cite this article: 

Liu Xiang(刘翔), Zhang Jian(张健), Wu Li-Ying(吴丽莹), and Gan Yu(甘雨) vgluept Fast generation of controllable equal-intensity four beams based on isosceles triangle multilevel phase grating realized by liquid crystal spatial light modulator 2011 Chin. Phys. B 20 024211

[1] Dammann H and Görtler K 1971 Opt. Commun. 3 312
[2] Kato J I, Takeyasu N, Adachi Y, Sun H B and Kawata S 2005 Appl. Phys. Lett. 86 044102
[3] Rodrigo P J, Perch-Nielsen I R, Alonzo C A and Glückstad J 2006 Opt. Express 14 13107
[4] Boyer V, Godun R M, Smirne G, Cassettari D, Chandrashekar C M, Deb A B, Laczik Z J and Foot C J 2006 Phys. Rev. A 73 031402
[5] Anguita J A, Neifeld M A and Vasic B V 2007 Appl. Opt. 46 6561
[6] Shih H F 2005 Jpn. J. Appl. Phys. 44 1815
[7] Liu B H and Zhang J 2006 Proceedings of the 6th World Congress on Intelligent Control and Automation Dalian, China, June 21--23, 2006 p. 5111
[8] Kuang Z, Perrie W, Liu D, Edwardson S, Cheng J, Dearden G and Watkins K 2009 Appl. Surf. Sci. 255 9040
[9] Liu B H, Wu L Y and Zhang J 2007 Acta Opt. Sin. 27 219 (in Chinese)
[10] Hasegawa S and Hayasaki Y 2009 Opt. Lett. 34 22
[11] Engstr"om D, Frank A, Backsten J, Goks"or M and Bengtsson J 2009 Opt. Express 17 9989
[12] Liu B H and Zhang J 2006 Chinese J. Lasers 33 899 (in Chinese)
[13] Perry M J 2005 Using Liquid Crystal Spatial Light Modulators for Closed Loop Tracking and Beam Steering with Phase Holography (MS Thesis) (United States: Air Force Institute of Technology)
[14] Liesener J, Reicherter M, Haist T and Tiziani H J 2000 Opt. Commun. 185 77
[15] Curtis J E, Koss B A and Grier D G 2002 Opt. Commun. 207 169
[16] Leonardo R D, Ianni F and Ruocco G 2007 Opt. Express 15 1913
[17] Persson M, Engstr"om D, Frank A, Backsten J, Bengtsson J and Goks"or M 2010 Opt. Express 18 11250
[18] Stolz C, Bigu'e L and Ambs P 2001 Appl. Opt. 40 6415
[19] Milewski G, Engstr"om D and Bengtsson J 2007 Appl. Opt. 46 95
[20] Jiang B G, Cao Z L, Mu Q Q, Hu L F, Li C and Xuan L 2008 Chin. Phys. B 17 4529
[21] Liu C, Mu Q Q, Hu L F, Cao Z L and Xuan L 2010 Chin. Phys. B 19 064214
[22] Farn M W 1991 SPIE 1555 34
[23] Gerchberg R W and Saxton W O 1972 Optik 35 237
[24] McManamon P F, Dorschner T A, Corkum D L, Friedman L J, Hobbs D S, Holz M, Liberman S, Nguyen H Q, Resler D P, Sharp R C and Watson E A 1996 Proceedings of the IEEE 84 268
[25] Xu L, Wu L Y, Zhang J and Liu X 2008 SPIE 7133 71333L
[26] Xu L, Zhang J and Wu L Y 2009 Opt. Laser Technol. 41 509
[27] Zhang J, Wu L Y, Liu X, Fang Y and Zhang H X 2007 SPIE 6711 67110C
[28] Xun X D and Cohn R W 2004 Appl. Opt. 43 6400
[29] Seldowitz M A, Allebach J P and Sweeney D W 1987 Appl. Opt. 26 2788
[30] Wang J Q, Liu B L, Zhang Z Y, Fang L and Du J L 2007 Laser Technol. 31 561 (in Chinese)
[31] Eriksson E, Keen S, Leach J, Goks"or M and Padgett M J 2007 Opt. Express 15 18268
[32] Takahashi H, Hasegawa S and Hayasaki Y 2007 Appl. Opt. 46 5917 endfootnotesize
[1] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[2] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[3] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[4] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
[5] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[6] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[7] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[8] Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber
Hui Zou(邹辉), Hui Xiong(熊慧), Yun-Shan Zhang(张云山), Yong Ma(马勇), Jia-Jin Zheng(郑加金). Chin. Phys. B, 2017, 26(12): 124216.
[9] Second-order temporal interference of two independent light beams at an asymmetrical beam splitter
Jianbin Liu(刘建彬), Jingjing Wang(王婧婧), Zhuo Xu(徐卓). Chin. Phys. B, 2017, 26(1): 014201.
[10] Asymmetric dynamic phase holographic grating in nematic liquid crystal
Chang-Yu Ren(任常愚), Hong-Xin Shi(石宏新), Yan-Bao Ai(艾延宝), Xiang-Bao Yin(尹向宝), Feng Wang(王丰), Hong-Wei Ding(丁红伟). Chin. Phys. B, 2016, 25(9): 094218.
[11] Demonstration of a cold atom beam splitter on atom chip
Xiaojun Jiang(蒋小军), Xiaolin Li(李晓林), Haichao Zhang(张海潮), Yuzhu Wang(王育竹). Chin. Phys. B, 2016, 25(8): 080311.
[12] Utra-thin anisotropic transmitting metasurface for polarization beam splitter application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Shan-Shan Ding(丁姗姗), Hai-Peng Li(李海鹏), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(8): 084101.
[13] Design of terahertz beam splitter based on surface plasmon resonance transition
Xiang Liu(刘项), Dong-Xiao Yang(杨冬晓). Chin. Phys. B, 2016, 25(4): 047301.
[14] Theoretical simulation of a polarization splitter based on dual-core soft glass PCF with micron-scale gold wire
Qiang Liu(刘强), Shuguang Li(李曙光), Xinyu Wang(王新宇), Min Shi(石敏). Chin. Phys. B, 2016, 25(12): 124210.
[15] Ultra-thin two-dimensional transmissive anisotropic metasurfaces for polarization filter and beam steering application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Kun Zhang(张昆), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(10): 104101.
No Suggested Reading articles found!