Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127102    DOI: 10.1088/1674-1056/20/12/127102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

White-light emission of ZnO nanoparticles prepared by sol–gel method

Li Shi-Shuai(李世帅), Zhang Zhong(张仲), Hang Jin-Zhao(黄金昭), Feng Xiu-Peng(冯秀鹏), and Liu Ru-Xi(刘如喜)
School of Physical Science, University of Jinan, Jinan 250022, China
Abstract  In:ZnO nanoparticles are prepared by the sol-gel process. The ratios of In/(Zn+In) are 0%, 5%, 8%, 10%, and 15%, respectively. Crystal phase structures and optoelectronic properties of these samples are characterized and the chromaticity coordinates of different samples are also calculated in CIE-XYZ colour system. The results show that preferred growth direction of ZnO changes from (002) plane to (001) plane and interplanar distance becomes shorter. When the doping amount of In is 5%, Zn atoms are completely replaced by In atoms. The resistivities of the samples first decrease, then increase afterwards with the increase of the amount of In. With the increase of In, the ultraviolet emission is redshifted and new peaks occur at 465 nm, 535 nm, and 630 nm. The sample with 10% indium has white-light emission. The band structures of samples with 0% and 12.5% indium are investigated by the first principle method. The mechanism of white emission is discussed from the viewpoint of additional energy levels.
Keywords:  sol-gel resistivity      chromaticity coordinate white-light emitting      first principle  
Received:  22 April 2011      Revised:  26 June 2011      Accepted manuscript online: 
PACS:  71.55.Gs (II-VI semiconductors)  
  73.61.Ga (II-VI semiconductors)  
  78.66.Hf (II-VI semiconductors)  
Fund: Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. Y2007G14), the Science and Technology Development Projects of Shandong Province of China (Grant Nos. 2009GG2003028 and 2010G0020423), the Doctoral Foundation of University of Jinan, China (Grant No. XBS0845), the Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, China (Grant No. 2010L0101), and the Scientific Research Foundation of University of Jinan, China (Grant No. XKY1029).

Cite this article: 

Li Shi-Shuai(李世帅), Zhang Zhong(张仲), Hang Jin-Zhao(黄金昭), Feng Xiu-Peng(冯秀鹏), and Liu Ru-Xi(刘如喜) White-light emission of ZnO nanoparticles prepared by sol–gel method 2011 Chin. Phys. B 20 127102

[1] Fan X M, Lian J S and Guo Z X 2005 Appl. Surf. Sci. 239 176
[2] Zou J, Zhou S M and Xia C T 2005 J. Crystal Growth. 280 185
[3] Huang J Z, Li S S and Feng X P 2010 Acta Phys. Sin. 59 5839 (in Chinese)
[4] Zhou X, Wang S Q, Lian G J and Xiong G C 2006 Chin. Phys. 15 199
[5] Liu Z W, Gu J F, Fu W J, Sun C W, Li Y and Zhang Q Y 2006 Acta Phys. Sin. 55 5479 (in Chinese)
[6] Lu S C, Song G L, Xiao Z Y, Zhang J H and Huang S H 2002 Chin. J. Lumin. 23 306 (in Chinese)
[7] Hao Y 2005 Optoelectron. Technol. & Inform. 18 65 (in Chinese)
[8] Guo H H, Lin Z H, Feng Z F, Lin L L and Zhou J Z 2009 J. Phys. Chem. C 113 12546
[9] Lin C F and Lee C Y http://nanotechweb.org/cws/article/tech/40848.html. 2009-10-30
[10] Guo C F, Ding X and Xu Y 2010 J. Am. Ceram. Soc. 93 1708
[11] Zhang J M, Zhao D L and Shen Z M 2010 High Perform. Ceram. 6 434
[12] Cao Y, Miao L and Tanemura S 2006 J. Appl. Phys. 45 623
[13] Han M, Liu S and Meng L F 2009 Chin. Hi-Tech Enterprises 116 54
[14] Cai W P and Guo J P 2009 Metrology & Measurement Technique 36 39
[15] Chris G and Vande W 2001 Physica B 308 310
[16] Pan Z W, Zu R D and Zhong L W 2001 Science 291 1948
[17] Lyudmila N D, Lyudmila L T U and Yurn M J 2008 Mater. Sci. 43 2143
[18] Lidia A, Gregorio B and Michele P J 2008 Phys. Chem. C 112 4049
[19] Peng X P, Zang H and Wang Z G 2008 Luminescence 128 328
[20] Yuan N Y, Fan L N and Li J H 2007 Appl. Surf. Sci. 253 4990
[21] Li S S, Feng X P, Hang J J, Zhang Z and Tao Y Y 2010 J. Funct. Mater. 41 113
[22] Fu Z X, Guo C X and Lin B X 1998 Chin. Phys. Lett. 15 457
[23] Seung Y B, Hyun C C, Chan W N and Jeunghee P 2005 Appl. Phys. Lett. 86 033102
[24] Jie J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P and Hou J G 2004 Chem. Phys. Lett. 387 466
[25] Nabi Z, Kellou A, Méccabih S, Khalfi A and Benosman N 2003 Mater. Sci. Eng. B 98 104
[26] Xu J, Huang S P and Wang Z S 2009 Solid State Commun. 149 527
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[9] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[10] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[11] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[12] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[13] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[14] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[15] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
No Suggested Reading articles found!