Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127201    DOI: 10.1088/1674-1056/20/12/127201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Antiresonance induced spin-polarized current generation

Yin Sun(尹笋), Min Wen-Jing(闵文静), Gao Kun(高琨) Xie Shi-Jie(解士杰), and Liu De-Sheng(刘德胜)
Department of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  According to the one-dimensional antiresonance effect (Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B 65 193402), we propose a possible spin-polarized current generation device. Our proposed model consists of one chain and an impurity coupling to the chain. The energy level of the impurity can be occupied by an electron with a specific spin, and the electron with such a spin is blocked because of the antiresonance effect. Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates. On the other hand, the device can also be used to measure the generated spin accumulation. Our model is feasible with today's technology.
Keywords:  antiresonance      spin-polarized current      impurity  
Received:  17 May 2011      Revised:  21 May 2011      Accepted manuscript online: 
PACS:  72.25.-b (Spin polarized transport)  
  73.63.-0b  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904082 and 10875072).

Cite this article: 

Yin Sun(尹笋), Min Wen-Jing(闵文静), Gao Kun(高琨) Xie Shi-Jie(解士杰), and Liu De-Sheng(刘德胜) Antiresonance induced spin-polarized current generation 2011 Chin. Phys. B 20 127201

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnär S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Awschalom D D, Loss D and Samarth N 2002 it Semiconductor Spintronics and Quantum Computation (Berlin: Springer)
[3] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[4] Schmeltzer D, Bishop A R, Saxena A and Smith D L 2003 Phys. Rev. Lett. 90 116802
[5] Sun Q F, Guo H and Wang J 2003 Phys. Rev. Lett. 90 258301
[6] Debray P, Rahman S M S, Wan J, Newrock R S, Cahay M, Ngo A T, Ulloa S E, Herbert S T, Muhammad M and Johnson M 2009 Nat. Nanotech. 4 759
[7] Quay C H L, Hughes T L, Sulpizio J A, Pfeiffer L N, Baldwin K W, West K W, Goldhaber-Gordon D and de Picciotto R 2010 Nat. Phys. 6 336
[8] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[9] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[10] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[11] Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[12] Wunderlich J, Irvine A C, Sinova J, Park B G, Zarbo L P, Xu X L, Kaestner B, Novak V and Jungwirth T 2009 Nat. Phys. 5 675
[13] Lü H F and Guo Y 2007 Appl. Phys. Lett. 91 092128
[14] Krich J J and Halperin B I 2008 Phys. Rev. B 78 035338
[15] Dahlhaus J P, Maier S and Komnik A 2010 Phys. Rev. B 81 075110
[16] Braunecker B, Feldman D E and Li F 2007 Phys. Rev. B 76 085119
[17] Pareek T P and Jayannavar A M 2008 Phys. Rev. B 77 153307
[18] Lin C H, Tang C S and Chang Y C 2008 Phys. Rev. B 78 245312
[19] Krich J J 2009 Phys. Rev. B 80 245313
[20] Moldoveanu V and Tanatar B 2010 Phys. Rev. B 81 035326
[21] Brosco V, Jerger M, San-José P, Zarand G, Shnirman A and Schön G 2010 Phys. Rev. B 82 041309(R)
[22] Zhang Z Z, Shen R, Sheng L, Wang R Q, Wang B G and Xing D Y 2011 Chin. Phys. B 20 047504
[23] Torio M E, Hallberg K, Flach S, Miroshnichenko A E and Titov M 2004 Eur. Phys. J. B 37 399
[24] Aligia A A and Salguero L A 2004 Phys. Rev. B 70 075307
[25] Souza F M, Jauho A P and Egues J C 2008 Phys. Rev. B 78 155303
[26] Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B bf 65 193402
[27] Wang S D, Sun Z Z, Cue N, Xu H Q and Wang X R 2002 Phys. Rev. B 65 125307
[28] Wang X R and Niu Q 1999 Phys. Rev. B 59 R12755
[29] Hattori K and Okamoto H 2006 Phys. Rev. B 74 155321
[30] Fu H H and Yao K L 2011 J. Chem. Phys. 134 054903
[31] Wang J, Zhu B F and Liu R B 2008 Phys. Rev. Lett. 104 256601
[32] Wang X R, Zheng Y S and Yin S 2005 Phys. Rev. B 72 121303(R)
[33] Bhattacharya P, Ghosh S and Stiff-Roberts A D 2004 Ann. Rev. Mater. Res. 34 1
[34] Wang Z M, Holmes K, Mazur Y I and Salamo G J 2004 Appl. Phys. Lett. 84 1931
[35] Xue H B, Zhang H Y, Nie Y H, Li Z J and Liang J Q 2010 Chin. Phys. B 19 047303
[1] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[2] Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field
Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Chin. Phys. B, 2022, 31(10): 100501.
[3] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[4] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[5] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[6] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[7] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[8] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[9] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[10] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[11] Impurity-induced Shiba bound state in the BCS-BEC crossover regime of two-dimensional Fermi superfluid
Siqi Shao(邵思齐), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 070501.
[12] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[13] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[14] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[15] Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations
Xiang-Yue Liu(刘湘月), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(6): 063103.
No Suggested Reading articles found!