CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Antiresonance induced spin-polarized current generation |
Yin Sun(尹笋)†, Min Wen-Jing(闵文静), Gao Kun(高琨) Xie Shi-Jie(解士杰), and Liu De-Sheng(刘德胜) |
Department of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract According to the one-dimensional antiresonance effect (Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B 65 193402), we propose a possible spin-polarized current generation device. Our proposed model consists of one chain and an impurity coupling to the chain. The energy level of the impurity can be occupied by an electron with a specific spin, and the electron with such a spin is blocked because of the antiresonance effect. Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates. On the other hand, the device can also be used to measure the generated spin accumulation. Our model is feasible with today's technology.
|
Received: 17 May 2011
Revised: 21 May 2011
Accepted manuscript online:
|
PACS:
|
72.25.-b
|
(Spin polarized transport)
|
|
73.63.-0b
|
|
|
73.23.Hk
|
(Coulomb blockade; single-electron tunneling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904082 and 10875072). |
Cite this article:
Yin Sun(尹笋), Min Wen-Jing(闵文静), Gao Kun(高琨) Xie Shi-Jie(解士杰), and Liu De-Sheng(刘德胜) Antiresonance induced spin-polarized current generation 2011 Chin. Phys. B 20 127201
|
[1] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnär S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[2] |
Awschalom D D, Loss D and Samarth N 2002 it Semiconductor Spintronics and Quantum Computation (Berlin: Springer)
|
[3] |
Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[4] |
Schmeltzer D, Bishop A R, Saxena A and Smith D L 2003 Phys. Rev. Lett. 90 116802
|
[5] |
Sun Q F, Guo H and Wang J 2003 Phys. Rev. Lett. 90 258301
|
[6] |
Debray P, Rahman S M S, Wan J, Newrock R S, Cahay M, Ngo A T, Ulloa S E, Herbert S T, Muhammad M and Johnson M 2009 Nat. Nanotech. 4 759
|
[7] |
Quay C H L, Hughes T L, Sulpizio J A, Pfeiffer L N, Baldwin K W, West K W, Goldhaber-Gordon D and de Picciotto R 2010 Nat. Phys. 6 336
|
[8] |
Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
|
[9] |
Hirsch J E 1999 Phys. Rev. Lett. 83 1834
|
[10] |
Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
|
[11] |
Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
|
[12] |
Wunderlich J, Irvine A C, Sinova J, Park B G, Zarbo L P, Xu X L, Kaestner B, Novak V and Jungwirth T 2009 Nat. Phys. 5 675
|
[13] |
Lü H F and Guo Y 2007 Appl. Phys. Lett. 91 092128
|
[14] |
Krich J J and Halperin B I 2008 Phys. Rev. B 78 035338
|
[15] |
Dahlhaus J P, Maier S and Komnik A 2010 Phys. Rev. B 81 075110
|
[16] |
Braunecker B, Feldman D E and Li F 2007 Phys. Rev. B 76 085119
|
[17] |
Pareek T P and Jayannavar A M 2008 Phys. Rev. B 77 153307
|
[18] |
Lin C H, Tang C S and Chang Y C 2008 Phys. Rev. B 78 245312
|
[19] |
Krich J J 2009 Phys. Rev. B 80 245313
|
[20] |
Moldoveanu V and Tanatar B 2010 Phys. Rev. B 81 035326
|
[21] |
Brosco V, Jerger M, San-José P, Zarand G, Shnirman A and Schön G 2010 Phys. Rev. B 82 041309(R)
|
[22] |
Zhang Z Z, Shen R, Sheng L, Wang R Q, Wang B G and Xing D Y 2011 Chin. Phys. B 20 047504
|
[23] |
Torio M E, Hallberg K, Flach S, Miroshnichenko A E and Titov M 2004 Eur. Phys. J. B 37 399
|
[24] |
Aligia A A and Salguero L A 2004 Phys. Rev. B 70 075307
|
[25] |
Souza F M, Jauho A P and Egues J C 2008 Phys. Rev. B 78 155303
|
[26] |
Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B bf 65 193402
|
[27] |
Wang S D, Sun Z Z, Cue N, Xu H Q and Wang X R 2002 Phys. Rev. B 65 125307
|
[28] |
Wang X R and Niu Q 1999 Phys. Rev. B 59 R12755
|
[29] |
Hattori K and Okamoto H 2006 Phys. Rev. B 74 155321
|
[30] |
Fu H H and Yao K L 2011 J. Chem. Phys. 134 054903
|
[31] |
Wang J, Zhu B F and Liu R B 2008 Phys. Rev. Lett. 104 256601
|
[32] |
Wang X R, Zheng Y S and Yin S 2005 Phys. Rev. B 72 121303(R)
|
[33] |
Bhattacharya P, Ghosh S and Stiff-Roberts A D 2004 Ann. Rev. Mater. Res. 34 1
|
[34] |
Wang Z M, Holmes K, Mazur Y I and Salamo G J 2004 Appl. Phys. Lett. 84 1931
|
[35] |
Xue H B, Zhang H Y, Nie Y H, Li Z J and Liang J Q 2010 Chin. Phys. B 19 047303
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|