CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Coherent beam combining of hybrid phase control in master oscillator-power amplifier configuration |
Wang Xiao-Lin(王小林)†, Zhou Pu(周朴), Ma Yan-Xing(马阎星), Ma Hao-Tong(马浩统), Xu Xiao-Jun(许晓军), Liu Ze-Jin(刘泽金), and Zhao Yi-Jun(赵伊君) |
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.
|
Received: 18 January 2010
Revised: 08 February 2010
Accepted manuscript online:
|
|
Fund: Project supported by the Innovation Foundation for Graduates in National University of Defense Technology, China (Grant No. B080702). |
Cite this article:
Wang Xiao-Lin(王小林), Zhou Pu(周朴), Ma Yan-Xing(马阎星), Ma Hao-Tong(马浩统), Xu Xiao-Jun(许晓军), Liu Ze-Jin(刘泽金), and Zhao Yi-Jun(赵伊君) Coherent beam combining of hybrid phase control in master oscillator-power amplifier configuration 2010 Chin. Phys. B 19 094202
|
[1] |
Galvanauskas A 2004 Optics and Photonics News 15 42
|
[2] |
Li L, Schülzgen A, Li H, Temyanko V L, Moloney J V and Peyghambarian N 2007 J. Opt. Soc. Am. B 24 1721
|
[3] |
Hans B, Cris J D, Mangir M S, Monica M and Rogers Jeffrey L 2005 Opt. Lett. 30 1339
|
[4] |
Chen Z L, Hou J, Zhou P and Jiang Z F 2008 IEEE J. Quantum Electron. 44 515
|
[5] |
He B, Lou Q H, Zhou J, Zheng Y H, Xue D, Dong J X, Wei Y R, Zhang F P, Qi Y F, Zhu J Q, Li J Y, Li S Y and Wang Z J 2007 Chin. Opt. Lett. 5 412
|
[6] |
He B, Lou Q H, Zhou J, Dong J X, Wei Y R, Xue D, Qi Y F, Su Z P, Li L B and Zhang F P 2006 Opt. Express 14 2721
|
[7] |
Cao J Q, Lu Q S, Hou J and Xu X J 2009 Opt. Express 17 7694
|
[8] |
Wang X L, Ma Y X, Zhou P, Ma H T, Li X, Xu X J and Liu Z J 2009 Laser Physics 19 984
|
[9] |
Shay T M, Benham V, Bake J T, Sanchez A D, Pilkington D and Lu A C A 2007 IEEE J. Sel. Top. Quantum Electron. 13 480
|
[10] |
Kansky J E, Yu C X, Murphy D V, Shaw S E J, Lawrence R C and Higgs C 2006 Proc. SPIE 6306 63060G
|
[11] |
Anderegg J, Brosnan S, Cheung E, Epp P, Hammons D, Komine H, Weber M and Wickham M 2006 Proc. SPIE 6102 61020U
|
[12] |
Liu L, Vorontsov M A, Polnau E P, Weyrauch T and Beresnev Leonid A 2007 Proc. SPIE 6708 67080K
|
[13] |
Yang R F, Yang P and Shen F 2009 Acta Phys. Sin. 58 8297 (in Chinese)
|
[14] |
Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J and Liu Z J 2010 Chin. Phys. B bf19 014202
|
[15] |
Wang B, Mies E, Minden M and Sanchez A 2009 Opt. Lett. 34 863
|
[16] |
Northrop Grumman 2009 http://www.irconnect.com/noc /press/pages/news_releas-es.html?d=161575
|
[17] |
Limpert J, R"oser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, T"unnermann A and T"unnermann 2007 IEEE J. Sel. Top. Quantum Electron. 13 537
|
[18] |
Jeong Y, Nilsson J, Sahu J K, Payne D N, Horley R, Hickey L M B and Turner P W 2007 IEEE J. Sel. Top. Quantum Electron. 13 546
|
[19] |
Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W and Barty C P J 2008 Opt. Express 16 13240
|
[20] |
Goodno G D, Book L D and Rothenberg J E 2009 Opt. Lett. 34 1204
|
[21] |
Corcoran C J and Durville F 2005 Appl. Phys. Lett. bf86 201118
|
[22] |
Carhart G W, Ricklin J C, Sivokon V P and Vorontsov M A 1997 Proc. SPIE 3126 221
|
[23] |
Vorontsov M A and Carhart G W 1997 Opt. Lett. 22 907
|
[24] |
Vorontsov M A, Carhart G W, Cohen M and Cauwenberghs G 2000 J. Opt. Soc. Am. A 17 1440
|
[25] |
Vorontsov M A, Weyrauch T, Beresnev L A, Carhart G W, Liu L and Aschenbach K 2009 IEEE J. Sel. Top. Quantum Electron 15 69
|
[26] |
Li X, Ma Y X, Zhou P, Wang X L, Xu X and Liu Z 2009 Opt. Express 17 385
|
[27] |
Zhou P, Ma Y X, Wang X L, Ma H, Xu X and Liu Z J 2009 Opt. Lett. 34 2939
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|