Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114101    DOI: 10.1088/1674-1056/20/11/114101
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Electric and magnetic dipole couplings in split ring resonator metamaterials

Fan Jing(樊京)a), Sun Guang-Yong(孙光永) b), and Zhu Wei-Ren(朱卫仁)c)†
a Department of Electronics and Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, China; b State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China; c Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  In this paper, the electric and the magnetic dipole couplings between the outer and the inner rings of a single split ring resonator (SRR) are investigated. We numerically demonstrate that the magnetic resonance frequency can be substantially modified by changing the couplings of the electric and magnetic dipoles, and give a theoretical expression of the magnetic resonance frequency. The results in this work are expected to be conducive to a deeper understanding of the SRR and other similar metamaterials, and provide new guidance for complex metamaterials design with a tailored electromagnetic response.
Keywords:  metamaterials      split ring resonator      coupling  
Received:  10 April 2011      Revised:  03 June 2011      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the Excellent Youth Foundation of Henan Provincial Scientific Committee, China (Grant No. 0612002200) and the Key Scientific and Technological Research Foundation of Henan Province, China (Grant No. 0623021600).

Cite this article: 

Fan Jing(樊京), Sun Guang-Yong(孙光永), and Zhu Wei-Ren(朱卫仁) Electric and magnetic dipole couplings in split ring resonator metamaterials 2011 Chin. Phys. B 20 114101

[1] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Micro. Theory Tech. 47 2075
[2] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[3] Zhang X A 2011 Nature 470 339
[4] Chen C H, Qu S B, Xu Z, Wang J F, Ma H and Zhou H 2011 Acta Phys. Sin. 60 024101 (in Chinese)
[5] Halimeh J C, Schmied R and Wegener M 2011 Opt. Express 19 6078
[6] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[7] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[8] Veselago V G 1968 Sov. Phys. Usp. 10 509
[9] Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M and Kong J A 2004 Phys. Rev. E 70 057605
[10] Chen H S, Ran L X, Huangfu J T, Zhang X M, Chen K S, Grzegorczyk T M and Kong J A 2005 Appl. Phys. Lett. 86 151909
[11] Shalaev V M, Cai W, Chettiar U K, Yuan H K, Sarychev A K, Drachev V P and Kildishev A V 2005 Opt. Lett. 30 3356
[12] Zhu W R, Zhao X P and Guo J Q 2008 Appl. Phys. Lett. 92 241116
[13] Zhu W R and Zhao X P 2009 J. Appl. Phys. 106 093511
[14] Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M and Economou E N 2007 Phys. Rev. B 75 235114
[15] Dolling G, Wegener M, Soukoulis C M and Linden S 2007 Opt. Lett. 32 53
[16] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[17] Zhu W R, Ding C L and Zhao X P 2010 Appl. Phys. Lett. 97 131902
[18] Chen X, Luo Y, Zhang J, Jiang K, Pendry J B and Zhang S 2011 Nature Comms. 2 176
[19] Fan J and Cai G Y 2010 Acta Phys. Sin. 59 6084 (in Chinese)
[20] Zhu W R and Zhao X P 2009 J. Opt. Soc. Am. B 26 2382
[21] Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N and Zhang X 2007 Phys. Rev. B 76 073101
[22] Liu N, Liu H, Zhu S N and Giessen H 2009 Nature Photo. 3 157
[23] Sersic I, Frimmer M and Koenderink A F 2009 Phys. Rev. Lett. 103 213902
[24] Singh R, Rockstuhl C, Lederer F and Zhang W 2009 Phys. Rev. B 79 085111
[25] Powell D A, Lapine M, Gorkunov M V, Shadrivov I V and Kivshar Y S 2010 Phys. Rev. B 82 155128
[26] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[27] Chen X D, Grzegorczyk T M, Wu B I, Pacheco J and Kong J A 2004 Phys. Rev. E 70 016608
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[3] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[4] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[7] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[8] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[9] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[10] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[11] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[12] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[13] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[14] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[15] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
No Suggested Reading articles found!