Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 113201    DOI: 10.1088/1674-1056/20/11/113201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Two-dimensional photoelectron momentum distribution of hydrogen in intense laser field

Sun Chang-Ping(孙长平)a), Zhao Song-Feng(赵松峰)a), Chen Jian-Hong(陈建宏)a)b), and Zhou Xiao-Xin(周效信)a)
a Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; b Peili College of Engineering and Technique, Lanzhou City University, Lanzhou 730070, China
Abstract  Two-dimensional (2D) electron momentum distributions and energy spectra of a hydrogen in an intense laser field are calculated by solving the time-dependent Schrödinger equation combined with the window-operator technique. Compared with the standard projection technique, the window-operator technique has the advantage that the continuum states of atoms can be avoided in the calculation. We show that the 2D electron momentum distributions and the energy spectra from those two techniques accord quite well with each other if an appropriate energy width is used in the window operator.
Keywords:  momentum distribution      energy spectra      time-dependent Schrö      dinger equation  
Received:  20 January 2011      Revised:  24 March 2011      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  32.80.Fb (Photoionization of atoms and ions)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11044007 and 11064013), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20096203110001), and the Foundation of Northwest Normal University, China (Grant Nos. NWNU-KJCXGC-03-62 and NWNU-KJCXGC-03-70).

Cite this article: 

Sun Chang-Ping(孙长平), Zhao Song-Feng(赵松峰), Chen Jian-Hong(陈建宏), and Zhou Xiao-Xin(周效信) Two-dimensional photoelectron momentum distribution of hydrogen in intense laser field 2011 Chin. Phys. B 20 113201

[1] Yang B, Schafer K J, Walker B, Kulander K C, Agostini P and DiMauro L F 1993 Phys. Rev. Lett. 71 3770
[2] Paulus G G, Nicklich W, Xu H, Lambropoulos P and Walther H 1994 Phys. Rev. Lett. 72 2851
[3] Gaarde M B, Schafer K J, Kulander K C, Sheehy B, Kim D and DiMauro L F 2000 Phys. Rev. Lett. 84 2822
[4] Rudenko A, Zrost K, Schröter C D, de Jesus V L B, Feuerstein B, Moshammer R and Ullrich J 2004 J. Phys. B 37 L407
[5] Maharjan C M, Alnaser A S, Litvinyuk I, Ranitovic P and Cocke C L 2006 J. Phys. B 39 1955
[6] Milovsević D B, Paulus G G, Bauer D and Becker W 2006 J. Phys. B 39 R203
[7] Lin C D, Le A T, Chen Z, Morishita T and Lucchese R R 2010 J. Phys. B 43 122001
[8] Morishita T, Le A T, Chen Z and Lin C D 2008 Phys. Rev. Lett. 100 013903
[9] Chen Z, Le A T, Morishita T and Lin C D 2009 Phys. Rev. A 79 033409
[10] Muller H G and Kooiman F C 1998 Phys. Rev. Lett. 81 1207
[11] Chen B Z 2000 Chin. Phys. 9 351
[12] Chen B Z 1998 Acta Phys. Sin. (Overseas edition) 7 817
[13] Morishita T, Okunishi M, Shimada K, Prumper G, Chen Z J, Watanabe S, Ueda K and Lin C D 2009 J. Phys. B 42 105205
[14] Milovsević D B, Hasović E, Busuladvzić M, Gazibegović Busuladvzić A and Becker W 2007 Phys. Rev. A 76 053410
[15] Morishita T, Chen Z, Watanabe S and Lin C D 2007 Phys. Rev. A 75 023407
[16] Schafer K J and Kulander K C 1990 Phys. Rev. A 42 5794
[17] Bauer D 2005 Phys. Rev. Lett. 94 113001
[18] Chen Z, Morishita T, Le A T, Wickenhauser M, Tong X M and Lin C D 2006 Phys. Rev. A 74 053405
[19] Peng L Y, Pronin E A and Starace A F 2008 New J. Phys. 10 025030
[20] Bauer D and Koval P 2006 Comp. Phys. Commun. 174 396
[21] Keldysh L V 1964 Sov. Phys. JETP 20 1307
[22] Chen Z, Morishita T, Le A T, Wickenhauser M, Tong X M and Lin C D 2006 Phys. Rev. A 74 053405
[23] Chen Z, Morishita T, Le A T and Lin C D 2007 Phys. Rev. A 76 043402
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[6] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[7] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[8] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[9] Solving the time-dependent Schrödinger equation by combining smooth exterior complex scaling and Arnoldi propagator
Shun Wang(王顺) and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2022, 31(1): 013201.
[10] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[11] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[12] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[13] Molecular photoelectron momentum and angular distributions of N2 molecules by ultrashort attosecond laser pulses
Si-Qi Zhang(张思琪), Qi Zhen(甄琪), Zhi-Jie Yang(杨志杰), Jun Zhang(张军), Ai-Hua Liu(刘爱华), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(4): 043201.
[14] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[15] Evidence of potential change in nonsequential double ionization
Changchun Jia(贾昌春), Pu Zhang(张朴), Hua Wen(文华), and Zhangjin Chen(陈长进). Chin. Phys. B, 2021, 30(2): 023401.
No Suggested Reading articles found!