Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 113101    DOI: 10.1088/1674-1056/20/11/113101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density functional study of Agn-1Y (n=2–10) clusters

Liu Xiao-Yong(刘小勇)a), Zhu Zheng-He(朱正和)b), and Sheng Yong(盛勇)a)†
a College of Material Science and Engineering, Sichuan University, Chengdu 610065, China; b Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  Employing the density functional theory, we investigate the lowest-energy geometric, the stable and the electronic properties of Agn-1Y (n=2-10) clusters in this paper. The structural optimization and the frequency analysis are performed at the B3LYP/LANL2DZ level. Meanwhile, the differences in geometry, stability and electronic properties between Agn and Agn-1Y (n=2-10) clusters are also studied. The results show that for the doping of the yttrium atoms, the structures and the average binding lengths of the Agn clusters are greatly changed. In addition, the thermodynamic stabilities of the Agn clusters are enhanced generally with the doping of the Y atoms. In addition, the chemical stabilities of the Agn-1Y clusters are still improved compared with that of the three-dimensional Agn clusters.
Keywords:  clusters      Agn-1Y      stability      electronic properties  
Received:  25 June 2010      Revised:  25 May 2011      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10676022).

Cite this article: 

Liu Xiao-Yong(刘小勇), Zhu Zheng-He(朱正和), and Sheng Yong(盛勇) Density functional study of Agn-1Y (n=2–10) clusters 2011 Chin. Phys. B 20 113101

[1] Valden M, Lai X and Goodman D W 1998 Science 281 1647
[2] Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F and Ferrando R 2004 Phys. Rev. Lett. 93 105503
[3] Qi K T, Mao H P, Wang H Y and Sheng Y 2010 Chin. Phys. B 19 033602
[4] Zhao L X, Feng X J, Cao T T, Liang X and Luo Y H 2009 Chin. Phys. B 18 2709
[5] Bai Y L, Chen X R, Cheng X H and Yang X D 2007 Chin. Phys. 16 0700
[6] Hailstone R K and de Keyzer R 2001 J. Phys. Chem. B 105 7533
[7] Gutta P and Hoffmann R 2003 J. Phys. Chem. A 107 8184
[8] Zhao S, Liu Z P, Li Z H, Wang W N and Fan K N 2006 J. Phys. Chem. A 110 11537
[9] Schoonheydt R A and Leeman H 1989 J. Phys. Chem. 93 2048
[10] Baba T and Inazu K 2006 Chem. Lett. 35 142
[11] Idrobo J C and övgüt S 2005 J. Phys. Chem. B 72 085445
[12] Kim S H, Medeiros-Ribeiro G, Ohlberg D A A, Williams R S and Heath J R1999 J. Phys. Chem. B 103 10341
[13] He J H, Ichinose I, Kunitake T, Nakao A, Shiraishi Y and Toshima N 2003 J. Am. Chem. Soc. 125 11034
[14] Uson R, ForniCs J, Tomas M, Cotton F A and Falvello L R 1984 J. Am. Chem. Soc. 106 2482
[15] Bauschlicher C W Jr., Langhoff S R and Partridge H 1989 J. Chem. Phys. 91 2412
[16] Willey K F, Cheng P Y, Bishop M B and Ducan M A 1991 J. Am. Chem. Soc. 113 4711
[17] Suzuki A and Tanaka K 1998 Jpn. J. Appl. Phys. 37 4872
[18] Negishi Y, Nakajima Y and Kaya K 2001 J. Chem. Phys. 115 3657
[19] Mitrić R, Hartmann M, Stanca B, Bonavcić-Kouteck'y V and Fantucci P 2001 J. Phys. Chem. A 105 8892
[20] Bonavcić-Kouteck'y V, Burda J, Mitrić R and Ge M 2002 J. Chem. Phys. 117 3120
[21] Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F and Ferrando R 2004 Phys. Rev. Lett. 93 105503
[22] Rapallo A, Rossi G, Ferrando R, Fortunelli A, Curley B C, Lloyd L D, Tarbuck G M and Johnston R L 2005 J. Chem. Phys. 122 194308
[23] Rossi G, Ferrando R, Rapallo R, Curley B C, Lloyd L D and Johnston R L 2005 J. Chem. Phys. 122 194309
[24] Yamamoto T, Takenaka S, Tanaka T and Baba T 2009 14th International Conference on X-Ray Absorption Fine Structure, July 26-31, 2009, Camerino, Italy, p. 12171
[25] Harb M, Rabilloud F and Simon D 2009 J. Chem. Phys. 131 174302
[26] Nigam S and Majumder C 2010 J. Phys.: Condens. Matter 22 435001
[27] Xiao X Y 2010 Chin. Phys. B 19 113604
[28] Frisch M J, Trucks G W and Schlegel H B 2003 Gaussian 03 (Revision A.7, Gaussian Inc., Pittsburgh, USA)
[29] Idrobo J C and övgüt S 2005 Phys. Rev. B 72 085445
[30] Li X B, Wang H Y, Tang Y J, Xu G L, Mao H P, Li C Y and Zhu Z H 2004 J. At. Mol. Phys. 21 388(in Chinese)
[31] Kittle C 1996 Introduction to Solid State Physics (7th edn.) (New York: Wiley) p. 54
[32] Beutel V, Krämer H G, Bhale G L, Kuhn M, Weyers K and Demtröder W 1993 J. Chem. Phys. 98 2699
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[7] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[8] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[9] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[10] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[11] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[12] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[13] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[14] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[15] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
No Suggested Reading articles found!