Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110404    DOI: 10.1088/1674-1056/20/11/110404
GENERAL Prev   Next  

Thermodynamic and geometric framework of a (2+1)-dimensional black hole with non-linear electrodynamics

Chen Gang(陈刚)a)b), Liu Zhan-Fang(刘占芳)a), and Lan Ming-Jian(兰明建)b)
a College of Resource and Environmental Sciences, Chongqing University, Chongqing 400030, China; bSchool of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400067, China
Abstract  The thermodynamic properties of a (2 + 1)-dimensional black hole with non-linear electrodynamics from the viewpoint of geometry is studied and some kinds of temperatures of the black hole have been obtained. Weinhold curvature and Ruppeiner curvature are explored as information geometry. Moreover, based on Quevedo's theory, the Legendre invariant geometry is investigated for the black hole. We also study the relationship between the scalar curvatures of the above several metrics and the phase transitions produced from the heat capacity.
Keywords:  black hole      temperature      thermodynamic geometry      phase transition  
Received:  17 May 2011      Revised:  02 June 2011      Accepted manuscript online: 
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.20.-q (Classical general relativity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072276) and the Scientific and Technological Foundation of Chongqing Municipal Education Commission, China (Grant No. KJ100706).

Cite this article: 

Chen Gang(陈刚), Liu Zhan-Fang(刘占芳), and Lan Ming-Jian(兰明建) Thermodynamic and geometric framework of a (2+1)-dimensional black hole with non-linear electrodynamics 2011 Chin. Phys. B 20 110404

[1] Bekenstein J D 1973 Phys. Rev. D 7 2333
[2] Hawking S W 1975 Commum. Math. Phys. 43 199
[3] Hartle J B and Hawking S W 1976 Phys. Rev. D 13 2188
[4] Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2752
[5] York Jr J W 1986 Phys. Rev. D 33 2092
[6] Whiting B F and York Jr J W 1988 Phys. Rev. Lett. 61 1336
[7] Brown J D, Comer G L, Melmed J, Martinez E A, Whiting B F and York J W 1990 Class. Quantum Grav. 7 1433
[8] Lemos J P S 1996 Phys. Rev. D 54 6206
[9] Ferrara S, Gibbons G W and Kallosh R 1997 Nucl. Phys. B 500 75
[10] Weinhold F 1975 J. Chem. Phys. 63 2479
[11] Ruppeiner G 1979 Phys. Rev. A 20 1608
[12] Ruppeiner G 2007 Phys. Rev. D 75 024037
[13] Aman J E and Pidokrajt N 2006 Phys. Rev. D 73 024017
[14] Myung Y S, Kim Y W and Park Y J 2007 Phys. Rev. D 76 104045
[15] Medved A J M 2008 Mod. Phys. Lett. A 23 2149
[16] Aman J, Bengtsson I and Pidokrajt N 2003 Gen. Rel. Grav. 35 1733
[17] Myung Y S, Kim Y W and Park Y J 2008 Phys. Lett. B 663 342
[18] Cai R G, Cao L M and Ohta N 2009 Phys. Lett. B 679 504
[19] Janke W, Johnston D A and Kenna R J 2010 J. Phys. A 43 425206
[20] Han Y W and Zhang J Y 2010 Phys. Lett. B 69 274
[21] Shen J Y, Cai R G, Wang B and Su R K 2007 Int. J. Mod. Phys. A 22 11
[22] Lan M J, Chen G and Han Y W 2010 Chin. Phys. B 19 090401
[23] Lan M J 2011 Chin. Phys. B 20 020404
[24] Mirza B and Zamani-Nasab M 2007 JHEP 06 059
[25] Quevedo H 2007 J. Math. Phys. 48 013506
[26] Quevedo H 2008 Gen. Rel. Grav. 40 971
[27] Quevedo H and Vazquez A 2008 AIP Conf. Proc. 977 165
[28] Alvarez J L, Quevedo H and Sanchez A 2008 Phys. Rev. D 77 084004
[29] Quevedo H and Sanchez A 2008 JHEP 09 034
[30] Quevedo H, Sanchez A, Taj S and Vazquez A 2011 Gen. Relativ. Gravit. bf43 1153
[31] Quevedo H and Sánchez A 2009 Phys. Rev. D 79 087504
[32] Larranaga A and Garcia L A 2008 arXiv: 0811.3368 [gr-qc]
[33] Larranaga A 2010 Bulg. J. Phys. 37 10
[34] Han Y W, Bao Z Q and Hong Y 2009 Chin. Phys. B 18 62
[35] Zeng X X and Yang S Z 2009 Chin. Phys. B 18 462
[36] Verlinde E P 2011 JHEP bf1104 029
[37] Han Y W and Lan M J 2011 Int. J. Theor. Phys. 50 899
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[4] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[7] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[8] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[9] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[10] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[11] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[12] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[13] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[14] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[15] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
No Suggested Reading articles found!