Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 104209    DOI: 10.1088/1674-1056/20/10/104209
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Broadband non-polarizing beam splitter based on guided mode resonance effect

Ma Jian-Yong(麻健勇)a)†, Xu Cheng(许程) b), Qiang Ying-Huai(强颖怀)b), and Zhu Ya-Bo(朱亚波) b)
a Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; b School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract  A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ~50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm~1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology.
Keywords:  non-polarizing beam splitter      guided mode resonance      silicon-on-insulator      rigorous coupled-wave analysis  
Received:  11 December 2010      Revised:  03 May 2011      Accepted manuscript online: 
PACS:  42.79.Wc (Optical coatings)  
Fund: Project supported by the Youth Science Research Foundation of China University of Mining and Technology (Grant No. 2009A058) and the Natural Science Foundation of Shanghai Committee of Science and Technology (Grant No. 10ZR1433500).

Cite this article: 

Ma Jian-Yong(麻健勇), Xu Cheng(许程), Qiang Ying-Huai(强颖怀), and Zhu Ya-Bo(朱亚波) Broadband non-polarizing beam splitter based on guided mode resonance effect 2011 Chin. Phys. B 20 104209

[1] Magnusson R and Wang S S 1992 Appl. Phys. Lett. 61 1022
[2] Wang S S and Magnusson R 1994 Opt. Lett. 19 919
[3] Sharon A, Rosenblatt D and Friesem A A 1997 J. Opt. Soc. Am. A 14 2985
[4] Sharon A, Rosenblatt D and Friesem A A 1996 Opt. Lett. 21 1564
[5] Thurman S T and Morris G M 2003 Appl. Opt. 42 3225
[6] Sentenac A and Fehrembach A L 2005 J. Opt. Soc. Am. A 22 475
[7] Priambodo P S, Maldonado T A and Magnusson R 2003 Appl. Phys. Lett. 83 3248
[8] Magnusson R, Shin D and Liu Z S 1998 Opt. Lett. 23 612
[9] Ganesh N, Xiang A, Beltran N B, Dobbs D W and Cunningham B T 2007 Appl. Phys. Lett. 90 081103
[10] Wang Z, Sang T, Zhu J, Wang L, Wu Y and Chen L 2006 Appl. Phys. Lett. 89 241119
[11] de Sterke C M, van der Laan C J and Frankena H J 1983 Appl. Opt. 22 595
[12] Gilo M 1992 Appl. Opt. 31 5345
[13] Ciosek J, Dobrowolski J A, Clarke G A and Laframboise G 1999 Appl. Opt. 38 1244
[14] Moharam M G, Grann E B, Pommet D A and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068
[15] Ma J Y, Liu S J, Zhang D W, Yao J K, Xu C, Shao J D, Jin Y X and Fan Z X 2008 Chin. Phys. B 17 3704
[16] Ma J Y, Xu C, Liu S J, Zhang D W, Jin Y Z, Fan Z Z and Shao T D 2009 Chin. Phys. B 18 1029
[17] Ma J Y, Liu S J, Wei C Y, Xu C, Jin Y Z, Zhao Y N, Shao J D and Fan Z Z 2008 Acta Phys. Sin. 57 827 (in Chinese)
[18] Ma J Y, Liu S J, Zhang D W, Yao J K, Xu C, Jin Y X, Shao J D and Fan Z Z 2008 Acta Phys. Sin. 57 4195 (in Chinese)
[19] Mehrdad S and Robert M 2007 Opt. Lett. 32 894
[20] Wei C Y, Liu S J, Deng D G, Shen J, Shao J D and Fan Z X 2006 Opt. Lett. 31 1223
[21] Shokooh-Saremi M and Magnusson R 2008 Opt. Express 16 18249
[1] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[2] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[3] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[4] Research on the radiation hardened SOI devices with single-step Si ion implantation
Li-Hua Dai(戴丽华), Da-Wei Bi(毕大炜), Zhi-Yuan Hu(胡志远), Xiao-Nian Liu(刘小年), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(4): 048503.
[5] Enhanced radiation-induced narrow channel effects in 0.13-μm PDSOI nMOSFETs with shallow trench isolation
Meng-Ying Zhang(张梦映), Zhi-Yuan Hu(胡志远), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Zheng-Xuan Zhang(张正选). Chin. Phys. B, 2018, 27(2): 028501.
[6] Influence of characteristics' measurement sequence on total ionizing dose effect in PDSOI nMOSFET
Xin Xie(解鑫), Da-Wei Bi(毕大伟), Zhi-Yuan Hu(胡志远), Hui-Long Zhu(朱慧龙), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌). Chin. Phys. B, 2018, 27(12): 128501.
[7] Direct measurement and analysis of total ionizing dose effect on 130 nm PD SOI SRAM cell static noise margin
Qiwen Zheng(郑齐文), Jiangwei Cui(崔江维), Mengxin Liu(刘梦新), Dandan Su(苏丹丹), Hang Zhou(周航), Teng Ma(马腾), Xuefeng Yu(余学峰), Wu Lu(陆妩), Qi Guo(郭旗), Fazhan Zhao(赵发展). Chin. Phys. B, 2017, 26(9): 096103.
[8] Guided mode resonance in planar metamaterials consistingof two ring resonators with different sizes
Zhen Yu(俞禛), Hang Che(陈航), Jianjun Liu(刘建军), Xufeng Jing(井绪峰), Xiangjun Li(李向军), Zhi Hong(洪治). Chin. Phys. B, 2017, 26(7): 077804.
[9] Total ionizing dose induced single transistor latchup in 130-nm PDSOI input/output NMOSFETs
Shuang Fan(樊双), Zhi-Yuan Hu(胡志远), Zheng-Xuan Zhang(张正选), Bing-Xu Ning(宁冰旭), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Meng-Ying Zhang(张梦映), Le-Qing Zhang(张乐情). Chin. Phys. B, 2017, 26(3): 036103.
[10] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[11] Effect of cryogenic temperature characteristics on 0.18-μm silicon-on-insulator devices
Bingqing Xie(解冰清), Bo Li(李博), Jinshun Bi(毕津顺), Jianhui Bu(卜建辉), Chi Wu(吴驰), Binhong Li(李彬鸿), Zhengsheng Han(韩郑生), Jiajun Luo(罗家俊). Chin. Phys. B, 2016, 25(7): 078501.
[12] Mechanism of floating body effect mitigation via cutting off source injection in a fully-depleted silicon-on-insulator technology
Pengcheng Huang(黄鹏程), Shuming Chen(陈书明), Jianjun Chen(陈建军). Chin. Phys. B, 2016, 25(3): 036103.
[13] Modeling of a triple reduced surface field silicon-on-insulator lateral double-diffused metal-oxide-semiconductor field-effect transistor with low on-state resistance
Yu-Ru Wang(王裕如), Yi-He Liu(刘祎鹤), Zhao-Jiang Lin(林兆江), Dong Fang(方冬), Cheng-Zhou Li(李成州), Ming Qiao(乔明), Bo Zhang(张波). Chin. Phys. B, 2016, 25(2): 027305.
[14] Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures
Kai Lu(吕凯), Jing Chen(陈静), Yuping Huang(黄瑜萍), Jun Liu(刘军), Jiexin Luo(罗杰馨), Xi Wang(王曦). Chin. Phys. B, 2016, 25(11): 118503.
[15] Effects of back gate bias on radio-frequency performance in partially depleted silicon-on-inslator nMOSFETs
Lü Kai (吕凯), Chen Jing (陈静), Luo Jie-Xin (罗杰馨), He Wei-Wei (何伟伟), Huang Jian-Qiang (黄建强), Chai Zhan (柴展), Wang Xi (王曦). Chin. Phys. B, 2015, 24(8): 088501.
No Suggested Reading articles found!