Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017304    DOI: 10.1088/1674-1056/20/1/017304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved performance of 4H-SiC metal-semiconductor field-effect transistors with step p-buffer layer

Deng Xiao-Chuan(邓小川), Zhang Bo(张波), Zhang You-Run(张有润), Wang Yi(王易), and Li Zhao-Ji(李肇基)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  An improved 4H-SiC metal-semiconductor field-effect transistors (MESFETs) with step p-buffer layer is proposed, and the static and dynamic electrical performances are analysed in this paper. A step p-buffer layer has been applied not only to increase the channel current, but also to improve the transconductance. This is due to the fact that the variation in p-buffer layer depth leads to the decrease in parasitic series resistance resulting from the change in the active channel thickness and modulation in the electric field distribution inside the channel. Detailed numerical simulations demonstrate that the saturation drain current and the maximum theoretical output power density of the proposed structure are about 30% and 37% larger than those of the conventional structure. The cut-off frequency and the maximum oscillation frequency of the proposed MESFETs are 14.5 and 62 GHz, respectively, which are higher than that of the conventional structure. Therefore, the 4H-SiC MESFETs with step p-buffer layer have superior direct-current and radio-frequency performances compared to the similar devices based on the conventional structure.
Keywords:  4H-SiC      metal-semiconductor field-effect transistors      step buffer layer  
Received:  23 July 2010      Revised:  19 August 2010      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  72.80.Ey (III-V and II-VI semiconductors)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009J029).

Cite this article: 

Deng Xiao-Chuan(邓小川), Zhang Bo(张波), Zhang You-Run(张有润), Wang Yi(王易), and Li Zhao-Ji(李肇基) Improved performance of 4H-SiC metal-semiconductor field-effect transistors with step p-buffer layer 2011 Chin. Phys. B 20 017304

[1] Hjelmgren H, Allerstam F, Andersson K, Nilsson P-AA and Rorsman N 2010 IEEE Trans. Electron Dev. 57 729
[2] Zhang Y R, Zhang B, Li Z J and Deng X C 2010 Chin. Phys. B 19 067102
[3] Chen F P, Zhang Y M, Zhang Y M, L"u H L and Song Q W 2010 Chin. Phys. B 19 047305
[4] Gao F, Chanana R and Nicholls T 2002 Microelectron. Reliab. 42 1003
[5] Treu M, Rupp R, Blaschitz P and Hilsenbeck J 2006 Superlattices and Microst. 40 380
[6] Zhu C L, Rusli and Zhao P 2007 Solid-State Electronics 51 343
[7] Andersson K, S"udow M, Nilsson P-AA, Sveinbj"ornsson E 2006 IEEE Trans. Electron Dev. Lett. 27 573
[8] Caughey D M and Thomas R E 1967 Proc. IEEE 55 2192
[9] Roschke M and Schwierz F 2001 IEEE Trans. Electron Dev. 48 1442
[10] Jaeger R C and Gaensslen F H 1980 IEEE Trans. Electron Dev. 27 914
[11] Galeckas A, Linnros J, Grivickas V, Lindefelf U and Hallin C 1997 Appl. Phys. Lett. 71 3269
[12] Dambrine G, Cappy A, Heliodore F and Playez E 1988 IEEE Trans. Microw. Theory and Tech. 36 1151
[13] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (New Jersey: John Wiley & Sons, Inc.) p396 endfootnotesize
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[4] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[5] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[6] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[7] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[8] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[9] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[10] Ultra-high voltage 4H-SiC gate turn-off thyristor forlow switching time
Qing Liu(刘青), Hong-Bin Pu(蒲红斌), Xi Wang(王曦). Chin. Phys. B, 2019, 28(12): 127201.
[11] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[12] Defects and electrical properties in Al-implanted 4H-SiC after activation annealing
Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻). Chin. Phys. B, 2019, 28(10): 106101.
[13] Simulation of SiC radiation detector degradation
Hai-Li Huang(黄海栗), Xiao-Yan Tang(汤晓燕), Hui Guo(郭辉), Yi-Men Zhang(张义门), Yu-Tian Wang(王雨田), Yu-Ming Zhang(张玉明). Chin. Phys. B, 2019, 28(1): 010701.
[14] Photoluminescence in fluorescent 4H-SiC single crystal adjusted by B, Al, and N ternary dopants
Shi-Yi Zhuo(卓世异), Xue-Chao Liu(刘学超), Wei Huang(黄维), Hai-Kuan Kong(孔海宽), Jun Xin(忻隽), Er-Wei Shi(施尔畏). Chin. Phys. B, 2019, 28(1): 017101.
[15] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
No Suggested Reading articles found!