CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic transport through a quantum ring coupled to ferromagnetic leads |
Chi Feng(迟锋)a)†, Sun Lian-Liang(孙连亮)b), Huang Ling(黄玲)a) and Zhao Jia(赵佳)a) |
a Department of Physics, Bohai University, Jinzhou 121013, China; b College of Science, North China University of Technology, Beijing 100041, China |
|
|
Abstract We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin–orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by the Green's function method. We find that due to the quantum interference effect arising from the RSOC-induced spin precession phase and the difference in travelling phase between the two arms of the ring, the conductance becomes spin-polarized even in the antiparallel magnetic configuration of the two leads, which is different from the case in single conduction channel system. The linear conductance, the spin polarization and the tunnel magnetoresistance are periodic functions of the two phases, and can be efficiently tuned by the structure parameters.
|
Received: 01 July 2010
Revised: 15 September 2010
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10704011), and the Education Department of Liaoning Province, China (Grant No. 2009A031). |
Cite this article:
Chi Feng(迟锋), Sun Lian-Liang(孙连亮), Huang Ling(黄玲) and Zhao Jia(赵佳) Electronic transport through a quantum ring coupled to ferromagnetic leads 2011 Chin. Phys. B 20 017303
|
[1] |
Aronov A G and Sharvin Yu V 1987 Rev. Mod. Phys. 59 755%
|
[2] |
Xia J B 1992 Phys. Rev. B 45 3593
|
[3] |
Liu P and Xiong S J 2009 Chin. Phys. B 18 5414
|
[4] |
Meir Y, Gefen Y and Entin W O 1989 Phys. Rev. Lett. 63 798
|
[5] |
Entin W O, Gefen Y, Meir Y and Oreg Y 1992 Phys. Rev. B 45 11 890
|
[6] |
Aronov A G and Lyanda G Y B 1993 Phys. Rev. Lett. 70 343
|
[7] |
Liu D Y, Xia J B and Chang Y C 2009 J. Appl. Phys. 106 093705
|
[8] |
Yi Y S, Qian T Z and Su Z B 1997 Phys. Rev. B 55 10631
|
[9] |
Wu M W, Zhou J and Shi Q W 2004 Appl. Phys. Lett. 85 1012
|
[10] |
Kiselev A A and Kim K W 2003 J. Appl. Phys. 94 4001
|
[11] |
Ionicioiu R and D'Amico I 2003 Phys. Rev. B 67 41307
|
[12] |
Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
|
[13] |
Sun Q F and Xie X C 2005 Phys. Rev. B 71 155321
|
[14] |
Sun Q F and Xie X C 2006 Phys. Rev. B 73 235301
|
[15] |
Chi F and Li S S 2006 J. Appl. Phys. 100 113703
|
[16] |
Datta S and Das B 1990 Appl. Phys. Lett. 56 665
|
[17] |
Li S S and Xia J B 2008 Appl. Phys. Lett. 92 022102
|
[18] |
Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
|
[19] |
Moln'ar B, Vasilopoulos P and Peeters F M 2005 Phys. Rev. B 72 075330
|
[20] |
Hirsch J E 1999 Phys. Rev. Lett. 83 1834
|
[21] |
Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
|
[22] |
Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
|
[23] |
Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 47204
|
[24] |
Xing Y X, Sun Q F and Wang J 2006 Phys. Rev. B 73 205339
|
[25] |
Xing Y X, Sun Q F and Wang J 2007 Phys. Rev. B 75 075324
|
[26] |
Xing Y X, Sun Q F and Wang J 2008 Phys. Rev. B 77 115346
|
[27] |
Chi F and Zheng J 2008 Appl. Phys. Lett. 92 062106
|
[28] |
L"u H F and Guo Y 2007 Appl. Phys. Lett. 91 092128
|
[29] |
Gong W J, Zheng Y S and L"u T Q 2008 Appl. Phys. Lett. 92 042104
|
[30] |
Chi F, Zheng J and Sun L L 2008 Appl. Phys. Lett. 92 172104
|
[31] |
Tsymbal E Y, Mryasov O and Le Clair P R 2003 J. Phys.: Condens. Matter 15 R109
|
[32] |
uZuti'c I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[33] |
Wang R Q and Jiang K M 2009 Chin. Phys. B 18 5443
|
[34] |
Trocha P and Barna's J 2007 Phys. Rev. B 76 165432
|
[35] |
Weymann I 2008 Phys. Rev. B 78 045310
|
[36] |
Chi F, Zeng H and Yuan X Q 2009 Superlatt. Microstruct. 46 523
|
[37] |
van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1%
|
[38] |
Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217%
|
[39] |
Li S S, Abliz A, Yang F H, Niu Z C, Feng S L and Xia J B 2002 J. Appl. Phys. 92 6662
|
[40] |
Li S S, Abliz A, Yang F H, Niu Z C, Feng S L and Xia J B 2002 J. Appl. Phys. 94 5402
|
[41] |
Li S S and Xia J B 2007 Appl. Phys. Lett. 91 092119
|
[42] |
Hou T, Wu S Q, Bi A H, Yang F B, Chen J F, and Fan M 2009 Chin. Phys. B 18 0783
|
[43] |
Wu S Q, Hou T, Zhao G P, and Yu W L 2010 Chin. Phys. B 19 047202
|
[44] |
Liang F, Yang Y H, Wang J and Chan K S 2009 Europhys. Lett. 87 47004
|
[45] |
Xiao X B, Li X M and Chen Y G 2009 Chin. Phys. B 18 5462
|
[46] |
Chi F and Li S S 2005 Chin. Phys. Lett. 22 2035
|
[47] |
Kubala B and K"onig J 2002 Phys. Rev. B 65 245301 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|