Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 016801    DOI: 10.1088/1674-1056/20/1/016801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A new method for the determination of surface tension from molecular dynamics simulations applied to liquid droplets

Zhu Ru-Zeng(朱如曾) and Yan Hong(闫红)
State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  For the determination of surface tension of liquid droplets by molecular dynamics simulations, the most time-consuming part is the calculation of pressure tensor in the transition layer, which makes it difficult to enhance the precision of the computation. A new method for the calculation of surface tension of liquid droplets to reduce the calculation quantity of pressure tensor in transition layer to the minimum is proposed in this paper. Two thousand particles are taken as example to show how to carry out our scheme.
Keywords:  surface tension      pressure tensor      molecular dynamics simulation      equimolar surface  
Received:  27 March 2010      Revised:  26 July 2010      Accepted manuscript online: 
PACS:  68.03.Cd (Surface tension and related phenomena)  
  68.35.Md (Surface thermodynamics, surface energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10772189) and the Knowledge Innovation Program of Chinese Academy of Sciences.

Cite this article: 

Zhu Ru-Zeng(朱如曾) and Yan Hong(闫红) A new method for the determination of surface tension from molecular dynamics simulations applied to liquid droplets 2011 Chin. Phys. B 20 016801

[1] Rowlinson J S and Widom B 1982 wxMolecular Theory of Capillary Clarendon Press (New York: Oxford University Press)
[2] Tolman R C 1949 wxJ. Chem. Phys.17 333
[3] Irving J H and Kirkwood J G 1950 wxJ. Chem. Phys.18 17
[4] Magda J J, Tirrell M and Davis H T 1985 wxJ. Chem. Phys.83 1888
[5] Croxton C A 1980 wxStatistical Mechanics of the Liquid State. (Bath: John Wiley Press)
[6] MacDowel L G and Bryk P 2007 wxPhys. Rev. E75 061609
[7] Binder K 1982 wxPhys. Rev. A25 1699
[8] Müller M and MacDowel L G 2000 wxMacromolecules33 3902
[9] Potoff J J and Panagiotopoulos A Z 2000 wxJ. Chem. Phys.112 6411
[10] Errington J R 2003 wxPhys. Rev. E67 012102
[11] Milchev A and Binder K 2001 wxJ. Chem. Phys.114 8610
[12] Müller M and Schick M 1996 wxJ. Chem. Phys.105 8282
[13] Reiss H, Frisch H L and Lebowitz J L 1959 wxJ. Chem. Phys.31 369
[14] Henderson J R 1983 wxMol. Phys.50 741
[15] Bryk P, Roth R, Mecke K R and Dietrich S 2003 wxPhys. Rev. E68 031602
[16] Gloor G J, Jackson G, Blas F J and de Miguel E 2005 wxJ. Chem. Phys.123 134703
[17] de Miguel E and Jackson G 2006 wx Mol. Phys.104 3717
[18] Woodward C E 1990 wxJ. Chem. Phys.94 3183
[19] Chandler D, McCoy J D and Singer S J 1986 wxJ. Chem. Phys.85 5971
[20] Helfand E 1972 wxJ. Chem. Phys.56 3592
[21] Müller M and Macdowel L G 2003 wxJ. Phys.: Condens. Matter15 R609
[22] Thompson S M, Gubbins K E, Walton J P R B, Chantry R A R and Rowlinson J S 1984 wxJ. Chem. Phys.81 530
[23] Vrabec J, Kedia G K, Fuchs G and Hasse H 2006 wxMol. Phys.104 1509
[24] Blokhuis E M and Kuipers J 2006 wxJ.Chem. Phys.124 074701
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!