Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010703    DOI: 10.1088/1674-1056/20/1/010703
GENERAL Prev   Next  

Consistency-dependent optical properties of lubricating grease studied by terahertz spectroscopy

Tian Lu(田璐)a)b),Zhou Qing-Li(周庆莉)c),Zhao Kun(赵昆)a)b), Shi Yu-Lei(施宇蕾)c),Zhao Dong-Mei(赵冬梅)c),Zhao Song-Qing(赵嵩卿)b), Zhao Hui(赵卉)b), Bao Ri-Ma(宝日玛)b),Zhu Shou-Ming(朱守明) b), Miao Qing(苗青)b),and Zhang Cun-Lin(张存林)c)
a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; b College of Science, China University of Petroleum, Beijing 102249, China; c Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  The optical properties of four kinds of lubricating greases (urea, lithium, extreme pressure lithium, molybdenum disulfide lithium greases) with different NLGL (National Lubricant Grease Institute of America) numbers were investigated using terahertz time-domain spectroscopy. Greases with different NLGL grades have unique spectral features in the terahertz range. Comparison of the experimental data with predictions based on Lorentz–Lorenz theory exhibited that the refractive indices of each kind of lubricating grease were dependent on the their consistency. In addition, molybdenum disulfide (MoS2) as a libricant additive shows strong absorption from 0.2 to 1.4 THz, leading to higher absorption of MoS2-lithium grease than that of lithium grease.
Keywords:  terahertz      lubricating grease      molybdenum disulfide      refractive index  
Received:  08 June 2010      Revised:  04 August 2010      Accepted manuscript online: 
PACS:  07.60.-j (Optical instruments and equipment)  
  42.65.-k (Nonlinear optics)  
  78.90.+t (Other topics in optical properties, condensed matter spectroscopy and other interactions of particles and radiation with condensed matter)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
Fund: Project supported by the New Century Excellent Talents in University (Grant No. NCET-08-0841), the National Natural Science Foundation of China (Grant Nos. 60778034, 60877038, and 10804077), the Beijng Natural Science Foundation (Grant No. 4082026), the Research Fund for the Doctoral Program of Higher Education (Grant No. 200804250006), and the State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Grant No. 2008-14).

Cite this article: 

Tian Lu(田璐), Zhou Qing-Li(周庆莉), Zhao Kun(赵昆), Shi Yu-Lei(施宇蕾), Zhao Dong-Mei(赵冬梅), Zhao Song-Qing(赵嵩卿), Zhao Hui(赵卉), Bao Ri-Ma(宝日玛), Zhu Shou-Ming(朱守明), Miao Qing(苗青), and Zhang Cun-Lin(张存林) Consistency-dependent optical properties of lubricating grease studied by terahertz spectroscopy 2011 Chin. Phys. B 20 010703

[1] Gow G 1997 Chemistry and Technology of Lubricants (London: Blackie Glasgow) p304
[2] Robertson W S 1984 Lubrication in Practice (United Kindom: Houndmills, Basingstoke) p151
[3] Schweiger H, Raybaud P, Kresse G and Toulhoat H 2002 J. Catal. 207 76
[4] Benavente E, Santa Ana M A, Mendizabal F and Gonzalez G 2002 Coord. Chem. Rev. 224 87
[5] Pawlak Z, Pai R, Bayraktar E, Kaldonski T and Oloyede A 2008 Biosystems. 94 202
[6] Evdokimov I N and Losev A P 2007 Fuel. 86 2439
[7] Al-Douseri F M, Chen Y Q and Zhang X C 2005 IEEE. Vols 1 and 2 598
[8] Gorenflo S, Tauer U, Hinkov I Lambrecht A, Buchner R and Helm H 2006 Chem. Phys. Lett. 494 421
[9] Naftaly M, Foulds A P, Miles R E and Davies A G 2006 Int. J. Infrared. Millim. Waves. 26 55
[10] Tian L, Zhou Q L, Jin B, Zhao K, Zhao S Q, Shi Y L and Zhang C L 2009 Sci. China Seri. G: Phys. Mech. & Astron. bf 52 1938
[11] Martin P C 1967 Phys. Rer. 16 143
[12] Shi Y L, Zhou Q L and Zhang C L 2009 Chin. Phys. B 18 4515
[13] Zhou Q L, Shi Y L, Jin B and Zhang C L 2008 Appl. Phys. Lett. 93 102103
[14] Castillo J, Gutierrez H, Ranaudo M and Villarroel O 2010 Energy Fuels. 24 492
[15] Winer W 1967 Wear 10 422
[16] Kam K K and Parkinson B A 1982 J. Phys. Chem. 86 463
[17] Frint R F and Yoffe A D 1963 Proc. R. Soc. Lond. A 273 69
[18] Wilcoxon J P and Samara G A 1995 Phys. Rev. B 51 7299
[19] Wilcoxon J P, Newcomer P P and Samara G A 1997 J. Appl. Phys. 81 7934
[20] Ji T, Ge M, Wang F F, Zhang Z Y, Yu X H and Xu H 2006 Nuclear Technology 29 561
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[6] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[7] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[10] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[11] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[12] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[13] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
No Suggested Reading articles found!