Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097502    DOI: 10.1088/1674-1056/19/9/097502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferromagnetism in Eu-doped ZnO films deposited by radio-frequency magnetic sputtering

Tan Yong-Sheng(谭永胜)a)b), Fang Ze-Bo(方泽波)b), Chen Wei(陈伟)b), and He Pi-Mo(何丕模)a)†
a Department of Physics, Zhejiang University, Hangzhou 310027, China; b Department of Physics, Shaoxing University, Shaoxing 312000, China
Abstract  This paper reports that Eu-doped ZnO films were successfully deposited on silicon (100) by radio-frequency magnetic sputtering. The x-ray diffraction patterns indicate that Eu substitutes for Zn in the lattice. Ferromagnetic loops were obtained by using superconducting quantum interference device at 10 K and room temperature. No discontinuous change was found in both of the zero-field-cooled and field-cooled curves. The observed ferromagnetism in Eu-doped ZnO can be attributed to a single magnetic phase. The saturation magnetisation decreased remarkably for the Eu-doped ZnO prepared by introducing 5% of oxygen in the sputtering gas or by the post annealing in O2, suggesting that the defects play key roles in the development of ferromagnetism in Eu-doped ZnO films.
Keywords:  Eu-doped ZnO films      ferromagnetism      radio-frequency magnetic sputtering  
Received:  22 December 2009      Revised:  25 March 2010      Accepted manuscript online: 
PACS:  7550P  
  7360F  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774129 and 60425411) and the Ministry of Science and Technology of China.

Cite this article: 

Tan Yong-Sheng(谭永胜), Fang Ze-Bo(方泽波), Chen Wei(陈伟), and He Pi-Mo(何丕模) Ferromagnetism in Eu-doped ZnO films deposited by radio-frequency magnetic sputtering 2010 Chin. Phys. B 19 097502

[1] Koshihara S, Oiwa T, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H and Munekata H 1997 Phys. Rev. Lett. 78 4617
[2] Ohno H 1998 Science 281 951
[3] Dietl T, Ohno H, Matsukura F, Cubert J and Ferrand D 2000 Science 287 1019
[4] Dietl T, Ohno H and Matsukura F 2001 Phys. Rev. B 63 195205
[5] Venkatesan M, Fitzgerald C B, Lunney J G and Coey J M D 2004 Phys. Rev. Lett. 93 177206
[6] Fitzgerald C B, Venkatesan M, Lunney J G, Dorneles L S and Coey J M D 2005 Appl. Surf. Sci. 247 493
[7] Chambers S A, Droubay T C, Wang C M, Rosso K M, Heald S M, Schwartz D A, Kittilstved K R and Gamelin D R 2006 Mater. Today 9 28
[8] Chou H, Lin C P, Huang J C A and Hsu H S 2008 Phys. Rev. B 77 245210
[9] Lin C Y, Wang W H, Lee C S, Sun K W and Suen Y W 2009 Appl. Phys. Lett. 94 151909
[10] Teraguchi N, Suzuki A, Nanishi Y, Zhou Y K, Hashimoto M and Asahi H 2002 Solid State Commun. 122 651
[11] Hite J, Thaler G T, Khanna R, Abemathy C R, Pearton S J, Park J H, Steckl A J and Zavada J M 2006 Appl. Phys. Lett. 89 132119
[12] Dhar S, Brandt O, Ramsteiner M, Sapega V F and Ploog K H 2005 Phys. Rev. Lett. 94 037305
[13] Zhou Y K, Choi S W, Kimura S, Emura S, Hasegawa S and Asahi H J 2007 Supercond. Nov. Magn. 20 429
[14] Zhang Y Z, Liu Y P, Wu L H, Xie E Q and Chen J T 2009 J. Phys. D: Appl. Phys. 42 085106
[15] Chen P L, Ma X Y and Yang D 2007 J. Alloys Comp. 431 317
[16] Fang Z B, Tan Y S, Liu X Q, Yang Y H and Yang Y Y 2004 Chin. Phys. 13 1330
[17] Zhou Z, Komori T, Yoshino M, Morinaga M, Matsunami N, Koizumi A and Takeda Y 2005 Appl. Phys. Lett. 86 041107
[18] Potzger K, Zhou S Q, Eichhorn F, Helm M, Skorupa W, Mucklich A, Fassbender J, Herrmannsdorfer T and Bianchi A 2006 J. Appl. Phys. 99 063906
[19] Ulbricht R W, Schmehl A, Heeg T, Schubert J and Schlom D G 2008 Appl. Phys. Lett. 93 102105
[20] Zhang J, Skomski R and Sellmyer D J 2005 J. Appl. Phys. 97 10D303
[21] Bhatti K P, Chaudhary S, Pandya D K and Kashyap S C 2007 J. Appl. Phys. 101 103919
[22] Durst A C, Bhatt R N and Wolf P A 2002 Phys. Rev. B 65 235205
[23] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nature Mater. 4 173
[24] Khare N, Kappers M J, Wei M, Blamire M G and MacManus-Driscoll J L 2006 Adv. Mater. 18 1449
[25] Yu Z, Li X, Long X, Cheng X W, Liu Y and Cao C B 2009 Chin. Phys. B 18 3040
[26] Liu X J, Zhu X Y, Song C, Zeng F and Pan F 2009 J. Phys. D: Appl. Phys. 42 035004
[27] Liu X C, Lu Z H and Zhang F M 2010 Chin. Phys. B 19 027502 endfootnotesize
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[4] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[5] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[6] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[7] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[8] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[9] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[10] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[13] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[14] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[15] Magnetism induced by Mn atom doping in SnO monolayer
Ruilin Han(韩瑞林), Yu Yan(闫羽). Chin. Phys. B, 2018, 27(11): 117505.
No Suggested Reading articles found!