Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097304    DOI: 10.1088/1674-1056/19/9/097304

Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height

Ru Guo-Ping(茹国平), Yu Rong(俞融), Jiang Yu-Long(蒋玉龙), and Ruan Gang(阮刚)
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, China
Abstract  This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the IVT curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage Vj, excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, Vj needs to be smaller than the barrier height $\phi$. With proper scheme of series resistance connection where the condition of Vj > $\phi$ is guaranteed, IVT curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of IVT curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing IVT curves only for small barrier height inhomogeneity.
Keywords:  Schottky diode      barrier height inhomogeneity      IVT      thermal activation  
Received:  26 November 2009      Revised:  20 March 2010      Accepted manuscript online: 
PACS:  7330  
Fund: Project supported by Shanghai-Applied Materials Research and Development Fund (Grant Nos. 07SA06 and 09700714200), and Fok Ying Tong Education Foundation (Grant No. 114006).

Cite this article: 

Ru Guo-Ping(茹国平), Yu Rong(俞融), Jiang Yu-Long(蒋玉龙), and Ruan Gang(阮刚) Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height 2010 Chin. Phys. B 19 097304

[1] Rhoderick E H and Williams R H 1988 Metal-Semiconductor Contacts 2nd ed. (Oxford: Clarendon)
[2] Ohdomari I and Tu K N 1980 J. Appl. Phys. 51 3735
[3] Song Y P, Van Meirhaeghe R L, Laflere W H and Cardon F 1986 Solid State Electron. 29 633
[4] Werner J H and Guttler H H 1991 J. Appl. Phys. 69 1522
[5] Horvath Zs J 1995 Vacuum 46 963
[6] Osvald J 1992 Solid State Electron. 35 1629
[7] Tung R T 1992 Phys. Rev. B 45 13509
[8] Chin V W L, Green M A and Sotrey J W V 1990 Solid State Electron. 33 299
[9] Dimitriadis C A, Logothetidis S and Alexandrou I 1995 Appl. Phys. Lett. 66 502
[10] Lauwers A, Larsen K K, Van Hove M, Verbeeck R, Maex K, Vercaemst A, Van Meirhaeghe R and Cardon F 1995 J. Appl. Phys. 77 2525
[11] McCafferty P G, Sellai A, Dawson P and Elabd H 1996 Solid State Electron. 39 583
[12] Chand S and Kumar J 1996 J. Appl. Phys. 80 288
[13] Paglino C, Fach A, John J, Muller P, Zogg H and Pescia D 1996 J. Appl. Phys. 80 7138
[14] Zhu S Y, Van Meirhaeghe R L, Detavernier C, Cardon F, Ru G P, Qu X P and Li B Z 2000 Solid State Electron. 44 663
[15] Hudait M K and Krupanidhi S B 2001 Physica B 307 125
[16] Palm H, Arbes M and Schulz M 1993 Phys. Rev. Lett. 71 2224
[17] Chand S 2002 Semicond. Sci. Technol. 17 L36
[18] Osvald J 2003 Semicond. Sci. Technol. 18 L24
[19] Chand S 2004 Semicond. Sci. Technol. 19 82
[20] Osvald J 2006 Solid State Commun. 138 39
[21] Rouag N, Boussouar L, Toumi S, Ouennoughi Z and Djouadi M A 2007 Semicond. Sci. Technol. 22 369
[22] Osvald J 2006 J. Appl. Phys. 99 033708
[23] Dobrocka E and Osvald J 1994 Appl. Phys. Lett. 65 575
[24] Chand S and Kumar J 1997 Semicond. Sci. Technol. 12 899
[25] Tugluoglu N, Karadeniz S and Altindal S 2005 Appl. Surf. Sci. 239 481
[26] Dokme I and Altindal S 2006 Semicond. Sci. Technol. 21 1053
[27] Yildiz D E, Altindal S and Kanbur H 2008 J. Appl. Phys. 103 124502
[28] Pakma O, Serin N, Serin T and Altindal S 2008 Semicond. Sci. Technol. 23 105014
[29] Tekeli Z, Altindal S, Cakmak M, Ozcelik S, Caliskan D and Ozbay E 2007 J. Appl. Phys. 102 054510
[30] Cheng C J, Zhang X F, Lu Z X, Ding J X, Zhang L, Zhao L, Si J J, Sun W G, Sang L W, Qin Z X and Zhang G Y 2008 Appl. Phys. Lett. 92 103505
[31] Ravinandan M, Rao P K and Reddy V R 2009 Semicond. Sci. Technol. 24 035004
[32] Arora N D, Hauser J R and Roulston D J 1982 IEEE Trans. Electron. Dev. 29 292 endfootnotesize
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor
Ya-Mei Dou(窦亚梅), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Xiao-Song Zhao(赵晓松), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(6): 066804.
[3] High performance lateral Schottky diodes based on quasi-degenerated Ga2O3
Yang Xu(徐阳), Xuanhu Chen(陈选虎), Liang Cheng(程亮), Fang-Fang Ren(任芳芳), Jianjun Zhou(周建军), Song Bai(柏松), Hai Lu(陆海), Shulin Gu(顾书林), Rong Zhang(张荣), Youdou Zheng(郑有炓), Jiandong Ye(叶建东). Chin. Phys. B, 2019, 28(3): 038503.
[4] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[5] Transport spectroscopy through dopant atom array in silicon junctionless nanowire transistors
Xiao-Song Zhao(赵晓松), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(9): 097310.
[6] Investigations on mesa width design for 4H-SiC trench super junction Schottky diodes
Xue-Qian Zhong(仲雪倩), Jue Wang(王珏), Bao-Zhu Wang(王宝柱), Heng-Yu Wang(王珩宇), Qing Guo(郭清), Kuang Sheng(盛况). Chin. Phys. B, 2018, 27(8): 087102.
[7] Broadband microwave frequency doubler based on left-handed nonlinear transmission lines
Jie Huang(黄杰), Wenwen Gu(顾雯雯), Qian Zhao(赵倩). Chin. Phys. B, 2017, 26(3): 037306.
[8] Characterization of vertical Au/β -Ga2O3 single-crystal Schottky photodiodes with MBE-grown high-resistivity epitaxial layer
X Z Liu(刘兴钊), C Yue(岳超), C T Xia(夏长泰), W L Zhang(张万里). Chin. Phys. B, 2016, 25(1): 017201.
[9] High performance trench MOS barrier Schottky diode with high-k gate oxide
Zhai Dong-Yuan (翟东媛), Zhu Jun (朱俊), Zhao Yi (赵毅), Cai Yin-Fei (蔡银飞), Shi Yi (施毅), Zheng You-Liao (郑有炓). Chin. Phys. B, 2015, 24(7): 077201.
[10] A novel physical parameter extraction approach for Schottky diodes
Wang Hao (王昊), Chen Xing (陈星), Xu Guang-Hui (许光辉), Huang Ka-Ma (黄卡玛). Chin. Phys. B, 2015, 24(7): 077305.
[11] Electrical and dielectric properties of Al/p-Si and Al/perylene/p-Si type diodes in a wide frequency range
Ahmet Kaya, Sedat Zeyrek, Sait Eren San, Şmsettin Altindal. Chin. Phys. B, 2014, 23(1): 018506.
[12] Directly extracting both threshold voltage and series resistance from conductance-voltage curve for AlGaN/GaN Schottky diode
Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Gu Guo-Dong (顾国栋), Dun Shao-Bo (敦少博), Yin Jia-Yun (尹甲运), Han Ting-Ting (韩婷婷), Sheng Bai-Cheng (盛百城), Cai Shu-Jun (蔡树军), Liu Bo (刘波), Lin Zhao-Jun (林兆军). Chin. Phys. B, 2013, 22(7): 077102.
[13] A monolithic distributed phase shifter based on right-handed nonlinear transmission lines at 30 GHz
Huang Jie (黄杰), Zhao Qian (赵倩), Yang Hao (杨浩), Dong Jun-Rong (董军荣), Zhang Hai-Ying (张海英). Chin. Phys. B, 2013, 22(12): 127307.
[14] Thermal activation of magnetization in Pr2Fe14B ribbons
Li Zhu-Bai (李柱柏), Shen Bao-Gen (沈保根), Niu E (钮萼), Liu Rong-Ming (刘荣明), Zhang Ming (章明), Sun Ji-Rong (孙继荣). Chin. Phys. B, 2013, 22(11): 117503.
[15] Temperature-dependent characteristics of 4H–SiC junction barrier Schottky diodes
Chen Feng-Ping(陈丰平), Zhang Yu-Ming(张玉明), Zhang Yi-Men(张义门), Tang Xiao-Yan(汤晓燕), Wang Yue-Hu(王悦湖), and Chen Wen-Hao(陈文豪) . Chin. Phys. B, 2012, 21(3): 037304.
No Suggested Reading articles found!