Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097101    DOI: 10.1088/1674-1056/19/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic and optical properties of orthorhombic distorted perovskite TbMnO3

Cai Lu-Gang(蔡鲁刚), Liu Fa-Min(刘发民), and Zhong Wen-Wu(钟文武)
Department of Physics, School of Physics and Nuclear Energy Engineering, Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract  This paper calculates the structural parameters, electronic and optical properties of orthorhombic distorted perovskite-type TbMnO3 by first principles using density functional theory within the generalised gradient approximation. The calculated equilibrium lattice constants are in a reasonable agreement with theoretical and experimental data. The energy band structure, density of states and partial density of states of elements are obtained. Band structures show that TbMnO3 is an indirect band gap between the O 2p states and Mn 3d states, and the band gap is of 0.48 eV agreeing with experimental result. Furthermore, the optical properties, including the dielectric function, absorption coefficient, optical reflectivity, refractive index and energy loss spectrum are calculated and analysed, showing that the TbMnO3 is a promising dielectric material.
Keywords:  density functional theory      band structure      density of states      optical property  
Received:  01 February 2010      Revised:  18 March 2010      Accepted manuscript online: 
PACS:  7115  
  7820  
Fund: Project supported by the Financial Support from Equipment Research Foundation of China (Grant No. 373974).

Cite this article: 

Cai Lu-Gang(蔡鲁刚), Liu Fa-Min(刘发民), and Zhong Wen-Wu(钟文武) Structural, electronic and optical properties of orthorhombic distorted perovskite TbMnO3 2010 Chin. Phys. B 19 097101

[1] Ramesh R and Spaldin N 2007 Natute Mater. 6 21
[2] Tokura Y 2007 J. Magn. Magn. Mater. 310 1145
[3] Zhang Y, Deng C Y, Ma J, Lin Y H and Nan C W 2008 Chin. Phys. B 17 3910
[4] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 17
[5] Sun Y, Ming X, Meng X, Sun Z H, Lan M, Chen G and Xiang P 2009 Acta Phys. Sin. 58 5653 (in Chinese)
[6] Manuel B and Agnes B 2008 Natute Mater. 7 425
[7] Claude E and Nicola A S 2006 Curr. Opin. In Solid State and Mater. Sci. 9 128
[8] Feng H J and Liu F M 2009 Chin. Phys. B 18 2487
[9] Ge B H, Li F H, Li X M, Wang Y M, Chi Z H and Jin C Q 2008 Chin. Phys. B 17 3163
[10] Zhong C G, Jiang Q, Fang J H and Ge C W 2009 Acta Phys. Sin. bf58 3491 (in Chinese)
[11] Quezel S and Tcheou F 1977 Physica B 86 88
[12] Kimura T and Goto T 2003 Nature 426 55
[13] Kenzelmann M and Harris A B 2005 Phys. Rev. Lett. 95 087206
[14] Katsura H and Naoto N 2005 Phys. Rev. Lett. 95 057205
[15] Li C L, Wang H and Wang B 2007 Appl. Phys. Lett. 91 07190
[16] Li C L, Wang B, Wang R and Wang H 2008 Physica B 403 539
[17] Li C L, Wang B, Wang R and Wang H 2008 Comp. Mate. Sci. 42 614
[18] Wang H, Zheng Y and Cai M Q 2009 Soli. Stat. Comm. 149 641
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Saha S and Sinha T P 2000 Phys. Rev. B 62 8828
[21] Alonso J A and Martinez-Lope M J 2000 Inorg. Chem. 39 917
[22] Cui Y M, Wang C C and Cao B S 2005 Soli. Stat. Commun. 133 641
[23] Cai M Q, Yin Z and Zhang M S 2003 Appl. Phys. Lett. 83 14
[24] Saniz R and Ye L H 2006 Phys. Rev. B 74 014209
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[15] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
No Suggested Reading articles found!